Submit a preprint

Latest recommendations

IdTitle * Authors * Abstract * Picture * Thematic fields * Recommender▼ReviewersSubmission date
09 Feb 2023
article picture

A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larva

A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larva

Recommended by based on reviews by 3 anonymous reviewers

This article [1] investigated two nematode genera, Panagrolaimus and Plectus, from the Siberian permafrost to unravel the adaptations allowing them to survive cryptobiosis; radio carbon dating showed that the individuals of Panagrolaimus had been in cryobiosis in Siberia for as long as 46,000 years! 

I was impressed by the multidisciplinary approach of this study, including morphological as well as phylogenetic and -genomic analyses to describe a new species. In triploids as some of the species studied here, it is quite challenging to assemble a novel genome. The authors furthermore not only managed to successfully reanimate the Siberian specimens but could also expose them to repeated freezing and desiccation in the lab, not an easy task.

This study reports some amazing discoveries - comparing the molecular toolkits between C. elegans and Panagrolaimus and Plectus revealed that several components were orthologues. Likewise, some of the biochemical mechanisms for surviving freezing in the lab turned out to be similar for C. elegans and the Siberian nematodes. This study thus provides strong evidence that nematodes developed specific mechanisms allowing them to stay in cryobiosis over very long times.

A surprising additional experimental result concerns the well-studied C. elegans - dauer larvae of this species can stay viable much longer after periods of animated suspension than previously thought.

I highly recommend this article as it is an important contribution to the fields of evolution and molecular biology. This study greatly advanced our understanding of how nematodes could have adapted to cryobiosis. The applied techniques could also be useful for studying similar research questions in other organisms.

Reference

[1] Shatilovich A, Gade VR, Pippel M, Hoffmeyer TT, Tchesunov AV, Stevens L, Winkler S, Hughes GM, Traikov S, Hiller M, Rivkina E, Schiffer PH, Myers EW, Kurzchalia TV (2023) A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larva. bioRxiv, 2022.01.28.478251, ver. 6 peer-reviewed and recommended by Peer Community in Zoology. https://doi.org/10.1101/2022.01.28.478251

A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larvaAnastasia Shatilovich, Vamshidhar R. Gade, Martin Pippel, Tarja T. Hoffmeyer, Alexei V. Tchesunov, Lewis Stevens, Sylke Winkler, Graham M. Hughes, Sofia Traikov, Michael Hiller, Elizaveta Rivkina, Philipp H. Schiffer, Eugene W Myers, Teymuras V. K...<p style="text-align: justify;">Some organisms in nature have developed the ability to enter a state of suspended metabolism called cryptobiosis1 when environmental conditions are unfavorable. This state-transition requires the execution of comple...Ecology, Evolution, Genetics/GenomicsIsa Schon2022-05-20 14:32:02 View
27 Apr 2023
article picture

Climate of origin influences how a herbivorous mite responds to drought-stressed host plants

Not all spider-mites respond in the same way to drought

Recommended by and based on reviews by Bastien Castagneyrol and 2 anonymous reviewers

Biotic interactions are often shaped by abiotic factors (Liu and Gaines 2022). Although this notion is not new in ecology and evolutionary biology, we are still far from a thorough understanding of how biotic interactions change along abiotic gradients in space and time. This is particularly challenging because abiotic factors can affect organisms and their interactions in multiple – direct or indirect – ways. For example, because abiotic conditions strongly determine how energy enters biological systems via producers, their effects can propagate through entire food webs, from the bottom to the top (O’Connor 2009, Gilbert et al 2019). Understanding how biological diversity - both within and across species - is shaped by the indirect effects of environmental conditions is a timely question as climate change and anthropogenic activities have been altering temperature and water availability across different ecosystems.

Motivated by the current water crisis and severe droughts predicted for the near future worldwide (du Plessis 2019), Migeon et al. (2023) investigated how water limitation on producers scales up to affect life-history patterns of a widespread crop pest, the spider mite Tetranychus urticae. The authors sampled spider mite populations (n = 12) along a striking gradient of climatic conditions (>16 degrees of latitude) in Europe. After letting mites acclimate to lab conditions for several generations, the authors performed a common garden experiment to quantify how the life-history traits of mite populations from different locations respond to drought stress in their host plants.

Curiously, the authors found that, when reared on drought-stressed plants, mites tended to develop faster, had higher fecundity and lower dispersion rates. This response was in line with some results obtained previously with Tetranychus species (e.g. Ximénez-Embun et al 2016). Importantly, despite some experimental caveats in the experimental design, which makes it difficult to completely disentangle the specific effects of location vs. environmental noise, results suggest the climate that populations originally experienced was also an important determinant of the plastic response in these herbivores. In fact, populations from wetter and colder regions showed a steeper change in drought response, while populations from arid climates showed a shallower response. This interesting result suggests the importance of intraspecific (between-populations) variation in the response to drought, which might be explained by the climatic heterogeneity in space throughout the evolutionary history of different populations. These results become even more important in our rapidly changing world, highlighting the importance of considering genetic variation (and conditions that generate it) when predicting plastic and evolutionary responses to stressful conditions.
 
REFERENCES

du Plessis, A. (2019). Current and Future Water Scarcity and Stress. In: Water as an Inescapable Risk. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-03186-2
 
Gibert, J.P. Temperature directly and indirectly influences food web structure. Sci Rep 9, 5312 (2019). https://doi.org/10.1038/s41598-019-41783-0
 
Liu, O. R., & Gaines, S. D. (2022). Environmental context dependency in species interactions. Proceedings of the National Academy of Sciences, 119(36), e2118539119. https://doi.org/10.1073/pnas.2118539119
 
Migeon A., Auger P., Fossati-Gaschignard O., Hufbauer R.A, Miranda M., Zriki G., Navajas M. (2023) The response to drought-stressed host plants varies among herbivorous mite populations from a climate gradient. bioRxiv, 2021.10.21.465244, ver. 4 peer-reviewed and recommended by Peer Community in Zoology. https://doi.org/10.1101/2021.10.21.465244
 
O'Connor, M.I. (2009), Warming strengthens an herbivore-plant interaction. Ecology, 90: 388-398. https://doi.org/10.1890/08-0034.1
 
Ximénez-Embún, M. G., Ortego, F., & Castañera, P. (2016). Drought-stressed tomato plants trigger bottom-up effects on the invasive Tetranychus evansi. PloS one, 11(1), e0145275. https://doi.org/10.1371/journal.pone.0145275

Climate of origin influences how a herbivorous mite responds to drought-stressed host plantsAlain Migeon, Philippe Auger, Odile Fossati-Gaschignard, Ruth A. Hufbauer, Maëva Miranda, Ghais Zriki, Maria Navajas<p style="text-align: justify;">Drought associated with climate change can stress plants, altering their interactions with phytophagous arthropods. Drought not only impacts cultivated plants but also their parasites, which in some cases are favore...Acari, Ecology, Life historiesInês Fragata2021-10-22 14:56:03 View
08 Mar 2024
article picture

A comparison of the parasitoid wasp species richness of tropical forest sites in Peru and Uganda – subfamily Rhyssinae (Hymenoptera: Ichneumonidae)

Two sides of tropical richness, parasitoid wasps collected by Malaise traps in tropical rainforests of South America and Africa

Recommended by based on reviews by Mabel Alvarado, Filippo Di Giovanni and 2 anonymous reviewers

Insect species richness and diversity comparisons between samples of the tropics around the world are rare, especially in taxa composed mainly of cryptic species as parasitoid wasps.

The article by Hopkins et al. (2024) compares samples of parasitoid wasps of the subfamily Rhyssinae (Hymenoptera: Ichneumonidae) collected by Malaise traps in tropical rainforests of Perú and Uganda. The samples presented several differences in the time of collecting, covertures, and the sampling number; however, they used the same kind of traps, and the taxonomic process for species delimitation was made for the same team of ichneumonid experts, using equivalent characters.

Publications about this kind of comparative study are difficult to find because cooperative projects on insect richness and diversity from South American and African continents are not frequent. In this sense, this study presented a valuable contrast that shows interesting results about the higher richness and lower abundance of the biota of the American tropics, even with a small sample, in comparison with the biota of the African tropics. The results are supported mainly by the rarefaction curves shown. This pattern of higher species richness and lower specimen abundance, observed in other American tropical taxa such as trees, birds, or butterflies, is observed too in these parasitoid wasps, increasing the body of information that could support the extension of the pattern to the entire biota of the American tropics. The authors recognize the study's limitations, which include strong differences in the size of the forest coverture between places. However, these differences and others are enough described and discussed.

This work is useful because it increases the information about the diversity patterns of the tropics around the world and because study a taxon mainly composed of cryptic species, with a small amount of information in tropical regions.

References

Hopkins T., Tuomisto H., Gómez I.C., Sääksjärvi I. E. 2024. A comparison of the parasitoid wasp species richness of tropical forest sites in Peru and Uganda – subfamily Rhyssinae (Hymenoptera: Ichneumonidae). bioRxiv, ver. 2 peer-reviewed and recommended by Peer Community in Zoology. https://doi.org/10.1101/2023.08.23.554460

A comparison of the parasitoid wasp species richness of tropical forest sites in Peru and Uganda – subfamily Rhyssinae (Hymenoptera: Ichneumonidae)Tapani Hopkins, Hanna Tuomisto, Isrrael C. Gómez, Ilari E. Sääksjärvi<p style="text-align: justify;">The global distribution of parasitoid wasp species richness is poorly known. Past attempts to compare data from different sites have been hampered by small sample sizes and lack of standardisation. During the past d...Biodiversity, Biogeography, InsectaGiovanny Fagua2023-08-24 18:30:26 View
26 Aug 2022
article picture

Within and among population differences in cuticular hydrocarbons in the seabird tick Ixodes uriae

Seabird tick diversification and cuticular hydrocarbons

Recommended by based on reviews by 2 anonymous reviewers

Ticks are notorious vectors of diseases in humans and other vertebrates. Much effort has been expended to understand tick diversity and ecology with the aim of managing their populations to alleviate the misery they bring. Further, the fundamental question of whether ticks are usually host generalists or host specialists has been debated at length and is important both for understanding the mechanisms of their diversification as well as for focusing control of ticks [1].

One elegant resolution of this question is to consider most tick species to be global generalists but local specialists [1]. This is well illustrated in a series of studies of the seabird tick, Ixodes uriae, which is comprised of host-specific races that show genetic [2], morphological [3] and host performance [4] differences associated with the seabirds they feed on. Such a pattern has clear ramifications for sympatric speciation; however, the factors that potentially act to drive these differences have remained elusive.

Dupraz et al. [5] have now made intriguing and important steps toward bridging the gap between demonstrating local patterns of tick host association and understanding the physiological mechanisms that may facilitate such divergences. They collected I. uriae ticks from the nests of two seabirds – Atlantic puffins and common guillemots – on the north side of Iceland. Four populations of ticks were sampled, with one island providing both puffin ticks and guillemot ticks, to give two tick populations from each of the two seabird host species. They then washed the ticks in solvent and analyzed the dissolved cuticular hydrocarbons (CHCs) using GC mass spectrometry, revealing 22 different hydrocarbon compounds common to most of these samples. CHCs are known to be important across arthropods for a variety of functions ranging from reducing water loss to facilitating communication and recognition between individuals with species.

Dupraz et al. [5] found three hydrocarbons that distinguished puffin ticks most consistently from guillemot ticks. A cross-validation test for host type also assigned 75% of the tick pools to the seabird host of origin. However, with these limited sample sizes, statistical analysis revealed no significant difference in CHC profiles between the host types, although a tendency was evident. Nonetheless, this study revealed a number of potentially diagnostic CHCs for tick host type, as well as some that may be more diagnostic of locations. This provides a fascinating and actionable foundation for further work using additional sites and host types, as well as an entry point into discerning the mechanisms at play in producing the diversity, complexity and adaptability that make ticks such medical menaces.

References

[1]  McCoy, K.D., Léger, E., Dietrich, M., 2013. Host specialization in ticks and transmission of tick-borne diseases: a review. Front. Cell. Infect. Microbiol. 3. https://doi.org/10.3389/fcimb.2013.00057

[2]  McCoy, K.D., Chapuis, E., Tirard, C., Boulinier, T., Michalakis, Y., Bohec, C.L., Maho, Y.L., Gauthier-Clerc, M., 2005. Recurrent evolution of host-specialized races in a globally distributed parasite. Proc. R. Soc. B Biol. Sci. 272, 2389–2395. https://doi.org/10.1098/rspb.2005.3230

[3]  Dietrich, M., Beati, L., Elguero, E., Boulinier, T., McCoy, K.D., 2013. Body size and shape evolution in host races of the tick Ixodes uriae. Biol. J. Linn. Soc. 108, 323–334. https://doi.org/10.1111/j.1095-8312.2012.02021.x

[4]  Dietrich, M., Lobato, E., Boulinier, T., McCoy, K.D., 2014. An experimental test of host specialization in a ubiquitous polar ectoparasite: a role for adaptation? J. Anim. Ecol. 83, 576–587. https://doi.org/10.1111/1365-2656.12170

[5] Dupraz, M., Leroy, C., Thórarinsson, T. L., d’Ettorre, P. and McCoy, K. D. (2022) Within and among population differences in cuticular hydrocarbons in the seabird tick Ixodes uriae. bioRxiv, 2022.01.21.477272, ver. 5 peer-reviewed and recommended by Peer Community in Zoology. https://doi.org/10.1101/2022.01.21.477272

Within and among population differences in cuticular hydrocarbons in the seabird tick Ixodes uriaeMarlène Dupraz, Chloe Leroy, Thorkell Lindberg Thórarinsson, Patrizia d’Ettorre, Karen D. McCoy<p>The hydrophobic layer of the arthropod cuticle acts to maintain water balance, but can also serve to transmit chemical signals via cuticular hydrocarbons (CHC), essential mediators of arthropod behavior. CHC signatures typically vary qualitativ...Acari, Biology, Ecology, EvolutionFelix Sperling2022-02-08 13:00:52 View
19 Jul 2024
article picture

Museomics of Carabus giant ground beetles shows an Oligocene origin and in situ Alpine diversification

Natural history collections continue to inform ground beetle genetics.

Recommended by based on reviews by Michael Caterino, Julian Dupuis and 1 anonymous reviewer

Some of the biodiversity of our planet now exists only in museums, due to continuing habitat destruction and climate change. With more than 380 million entomological specimens already preserved in museums (Johnson and Owens 2023), there is much work left to document what we already have. Fortunately, new advances in DNA sequencing have given us the opportunity to get enormous amounts of information from dried specimens on pins.
 
One such advance is HyRAD-X, which uses RAD-derived probes originally developed using RNA extracted from a selection of specimens with high RNA-integrity (Schmid et al. 2017). These exome-limited probes can then be used to capture low-integrity DNA extracted from a single leg from museum specimens, followed by Illumina sequencing of the enriched libraries.
 
Ground beetles allow an excellent demonstration of this approach, as their diversity, large size, and charismatic appearance has led to them being well represented in museums. Using a HyRAD-X probe set previously developed for a higher phylogeny within the subfamily Carabinae (Toussaint et al. 2021), the authors have now applied the same probe set to produce a comprehensive phylogeny for Arcifera, a clade of four subgenera and ten species within the genus Carabus (Pauli et al. 2024).
 
Of the 96 specimens that they started out with, 90% were from natural history collections and 40% dropped out immediately due to poor DNA extraction yield. After filtering the resulting sequence reads for minimum coverage and minimum number of samples per locus, they ended up with 35 museum specimens with an average of 793 loci. Phylogenetic analysis of this data supported the current classification of these beetles.
 
Pauli et al’s. (2024) study has effectively shown the power of HyRAD-X methods for applications at the species level. In-house production of probes makes the method accessible, expanding the opportunity to use museum specimens for population genetic research.

References

Johnson KR, Owens, (IFP. 2023) A global approach for natural history museum collections. Science 379,1192-1194(2023). https://doi.org/10.1126/science.adf6434

Pauli MT, Gauthier J, Labédan M, Blanc M, Bilat J, Toussaint EFA (2024) Museomics of Carabus giant ground beetles shows an Oligocene origin and in situ alpine diversification. bioRxiv, ver. 5 peer-reviewed and recommended by Peer Community in Zoology. https://doi.org/10.1101/2024.03.21.586057

Schmid, S., Genevest, R., Gobet, E., Suchan, T., Sperisen, C., Tinner, W. and Alvarez, N. (2017), HyRAD-X, a versatile method combining exome capture and RAD sequencing to extract genomic information from ancient DNA. Methods Ecol Evol, 8: 1374-1388. https://doi.org/10.1111/2041-210X.12785

Toussaint EFA, Gauthier J, Bilat J, Gillett CPDT, Gough HM, Lundkvist H, Blanc M, Muñoz-Ramírez CP, Alvarez N (2021) HyRAD-X Exome Capture Museomics Unravels Giant Ground Beetle Evolution, Genome Biology and Evolution, Volume 13, Issue 7, evab112, https://doi.org/10.1093/gbe/evab112

Museomics of *Carabus* giant ground beetles shows an Oligocene origin and *in situ* Alpine diversificationMarie T. PAULI, Jeremy GAUTHIER, Marjorie LABEDAN, Mickael BLANC, Julia BILAT, Emmanuel F.A. TOUSSAINT<p style="text-align: justify;">The development of museomics represents a major paradigm shift in the use of natural history collection specimens for systematics and evolutionary biology. New approaches in this field allow the sequencing of hundre...Insecta, Phylogeny, SystematicsFelix Sperling2024-03-27 15:30:31 View
03 Jul 2020
article picture

The 'Noble false widow' spider Steatoda nobilis is an emerging public health and ecological threat

How the noble false widow spider Steatoda nobilis can turn out to be a rising public health and ecological concern

Recommended by based on reviews by Michel Dugon and 2 anonymous reviewers

"The noble false widow spider Steatoda nobilis is an emerging public health and ecological threat" by Clive Hambler (2020) is an appealing article discussing important aspects of the ecology and distribution of a medically significant spider, and the health concerns it raises.
By contrast to previous studies (Dunbar et al., 2018; Warell et al., 1991; Bauer et al., 2019; BBC 2013, 2018), this article, with its extensive media and scientific literature review, shows that S. nobilis (Thorell, 1875) is now an important health concern in Britain. Indeed, the author shows that the population of this spider has significantly increased, at least since 1990, in both southern Britain and Ireland where it has remained greatly under-recorded. In these areas, S. nobilis is now often the dominant spider on and in buildings, in places in which there is a high a risk of bites, some of which are likely to be severe, in humans, with these bites largely under-recorded. According to Clive Hambler "There is thus a possibility of bites being left without adequate rapid treatment and monitoring - with a low but non-trivial risk of necrosis or sepsis".
The author points that one of the reasons for the lack of awareness of the risk is that arachnologists typically have a conflict of interest between the conservation of the species they study and raising concerns about spiders. This may lead them to understate the risk. Clive Hambler therefore calls for a closer, appropriately weighted attention to the frequency and risk of bites, based on all the information available, rather than being "dismissive of the possibilities of bites and impacts simply because many media reports contain major errors or alarmism". He also argues that the British Arachnological Society’s guidance on "false widow spiders" "needs substantive revision, both in terms of the likelihood of bites and the severity of effects."
Indeed, the author demonstrates that many inaccuracies have been published (see Table 3 of his manuscript) and, for each, he provides a correction and/or an alternative opinion. At the end of this MS (see Table 4), he provides testable speculations and hypotheses. As he rightly points out, testing is very important to fuel the debate, because "It will be very difficult to get a balanced and proportionate debate and response for such a confused and emotive issue, especially with the many misleading popular reports." He also suggests that research will require interdisciplinary collaboration between experts in many domains, including pathologists, immunologists, clinicians, ecologists, arachnologists, psychologists, physiologists, climatologists and epidemiologists.
This preprint is clearly descriptive and speculative, but well-written, interesting and certainly useful in terms of a review of the biology, ecology, potential dangerousness and distribution of S. nobilis, particularly for future studies. There is no doubt that arachnologists, the medical community and the media will be interested in this article, which is intended to sound the alarm. Naturalists in general will also be interested in this manuscript because it is an original and successful attempt to increase knowledge about a particular taxon based on diverse information sources.
The structure of the MS is a bit odd, with a certain toing-and-froing between the ecology/biology/distribution of the spider and the risks, dangerousness and venom of bites, but this is not problematic, as shown by the reviews of the manuscript - three reviews (available below) were written, two by specialists in this noble false widow (Michel Dugon and another researcher who wished to remain anonymous).
Despite the controversy surrounding certain of the statements made in this article, I therefore strongly recommend it and look forward to seeing the identified research priorities addressed.

References

[1] Hambler, C. (2020). The “Noble false widow” spider Steatoda nobilis is an emerging public health and ecological threat. OSF Preprints, axbd4, ver. 4 peer-reviewed and recommended by PCI Zoology. doi: 10.31219/osf.io/axbd4
[2] Dunbar J.P., Afoullouss S., Sulpice R., Dugon M.M. (2018) Envenomation by the noble false widow spider Steatoda nobilis (Thorell, 1875) - five new cases of steatodism from Ireland and Great Britain. Clin Toxicol (Phila). 56(6):433-435. doi: 10.1080/15563650.2017.1393084
[3] Warrell D.A., Shaheen J., Hillyard P.D., Jones D. (1991) Neurotoxic envenoming by an immigrant spider (Steatoda nobilis) in southern England. Toxicon. 29(10):1263-5. doi: 10.1016/0041-0101(91)90198-Z
[4] Bauer, T., Feldmeier, S., Krehenwinkel, H., Wieczorrek, C., Reiser, N. and Dreitling, R. (2019) Steatoda nobilis, a false widow on the rise: a synthesis of past and current distribution trends. NeoBiota 42: 19–43. doi: 10.3897/neobiota.42.31582
[5] BBC (2013). False widow spider bites footballer Steve Harris. http://www.bbc.co.uk/news/uk-england-devon-24470023 Accessed 1 November 2018.
[6] BBC (2018). False widow spider infestation schools to remain shut. https://www.bbc.co.uk/news/uk-england-london-45761046 Accessed 19 December 2018.

The 'Noble false widow' spider Steatoda nobilis is an emerging public health and ecological threatHambler, C.<p>*Steatoda nobilis*, the 'Noble false widow' spider, has undergone massive population growth in southern Britain and Ireland, at least since 1990. It is greatly under-recorded in Britain and possibly globally. Now often the dominant spider on an...Arachnids, Behavior, Biogeography, Biological invasions, Conservation biology, Demography/population dynamics, Ecology, Medical entomology, Methodology, Pest management, Toxicology, Veterinary entomologyEtienne Bilgo2019-06-28 18:26:05 View
05 Jan 2021
article picture

Do substrate roughness and gap distance impact gap-bridging strategies in arboreal chameleons?

Gap-bridging strategies in arboreal chameleons

Recommended by based on reviews by Simon Baeckens and 2 anonymous reviewers

Until now, very little is known about the tail use and functional performance in tail prehensile animals. Luger et al. (2020) are the first to provide explorative observations on trait related modulation of tail use, despite the lack of a sufficiently standardized data set to allow statistical testing. They described whether gap distance, perch diameter, and perch roughness influence tail use and overall locomotor behavior of the species Chamaeleo calyptratus.
Peterson (1984) described already the pattern how and when the tail is moved when bridging the distance from one perch to another. The study by Luger et al. (2020) further explores how this bridging distance, as well as other perch parameters modulate this behavior and the importance of tail use in it. Zippel et al. (1999) study the underlying musculoskeletal anatomy of the tail in chameleons, showing that chameleons have a strikingly different tail anatomy than other prehensile squamates. The difference is (partially) to be seen in the capacity of tail autotomy, that has been lost in chameleons.
Luger et al. (2020) describe the role the tail has in bridging a gap, and show that challenging and acrobatic movements to bridge large gaps, or when grasping on not so rough surfaces, relies heavily on a strong tail. Full body suspension with the tail can explain why tail autotomy has been lost, thus explaining the diverging tail musculature. They speculate on the role of this behavior for sexual selection for males. Sexual selection for males with a higher gripping performance could explain why male chameleons perform better for their size. In addition, boldness could have played a role. The authors state that exploring personality and its links to morphology, performance, and behaviors like grap-bridging would be a worthwhile avenue for future research on sexual selection in reptiles.

References

Luger, A.M., Vermeylen, V., Herrel, A. and Adriaens, D. (2020) Do substrate roughness and gap distance impact gap-bridging strategies in arboreal chameleons? bioRxiv, 2020.08.21.260596, ver. 3 peer-reviewed and recommended by PCI Zoology. doi: https://doi.org/10.1101/2020.08.21.260596
Peterson, J. A. (1984). The locomotion of Chamaeleo (Reptilia: Sauria) with particular reference to the forelimb. Journal of Zoology, 202(1), 1-42. doi: https://doi.org/10.1111/j.1469-7998.1984.tb04286.x
Zippel, K. C., Glor, R. E., and Bertram, J. E. (1999). On caudal prehensility and phylogenetic constraint in lizards: the influence of ancestral anatomy on function in Corucia and Furcifer. Journal of Morphology, 239(2), 143-155. doi: https://doi.org/10.1002/(SICI)1097-4687(199902)239:2%3C143::AID-JMOR3%3E3.0.CO;2-O

Do substrate roughness and gap distance impact gap-bridging strategies in arboreal chameleons?Allison M. Luger, Vincent Vermeylen, Anthony Herrel, Dominique Adriaens<p>Chameleons are well-equipped for an arboreal lifestyle, having ‘zygodactylous’ hands and feet as well as a fully prehensile tail. However, to what degree tail use is preferred over autopod prehension has been largely neglected. Using an indoor ...Behavior, Biology, Herpetology, Reptiles, VertebratesEllen Decaestecker2020-08-25 10:06:42 View
08 Feb 2022
article picture

The initial response of females towards congeneric males matches the propensity to hybridise in Ophthalmotilapia

Experimental evidence for asymmetrical species recognition in East African Ophthalmotilapia cichlids

Recommended by based on reviews by George Turner and 2 anonymous reviewers

I recommend the Van Steenberge et al. study. With over 2000 endemic species, the East African cichlids are a well-established model system in speciation research (Salzburger 2018) and several models have been proposed and tested to explain how these radiations formed (Kocher 2004). Hybridization was shown to be a main driver of the rapid speciation and adaptive radiations of the East African Cichlid fishes (Seehausen 2004). However, it is obvious that unrestrained hybridization also has the potential to reduce taxonomic diversity by erasing species barriers. In the classical model of cichlid evolution, special emphasis was placed on mate preference (Kocher 2004). However, no attention was placed on species recognition, which was implicitly assumed. There is, however, more research needed on what species recognition means, especially in radiating lineages such as cichlids. In a previous study, Nevado et al. 2011 found traces of asymmetrical hybridization between members of the Lake Tanganyika radiation: the genus Ophthalmotilapia. This recommended study by Van Steenberge et al. is based on Nevado et al. (2011), which detected that in one genus of Ophthalmotilapia mitochondrial DNA ‘typical’ for one of the four species (O. nasuta) was also found in three other species (O. ventralis, O. heterodonta, and O. boops). The authors suggested that this could be explained by the fact that females of the three other species accepted O. nasuta males, but that O. nasuta females were more selective and accepted only conspecifc males. This could hence be due to asymmetric mate preferences, or by asymmetric abilities for species recognition. 

This is exactly what the current study by Van Steenberge et al. did. They tested the latter hypothesis by presenting females of two different Ophthalmotilapia species with con- and heterospecific males. This was tested through experiments, making use of wild specimens of two species: O. nasuta and O. ventralis. The authors assumed that if they performed classical “choice-experiments”, they would not notice the recognition effects, given that females would just select preferred, most likely conspecific, males. Instead, specimens were only briefly presented to other fishes since the authors wanted to compare differences in the ability for ‘species recognition’. In this, the authors followed Mendelson and Shaw (2012) who used “a measurable difference in behavioural response towards conspecifics as compared to heterospecifics’’ as a definition for recognition. Instead of the focus on selection/preference, they investigated if females of different species behaved differently, and hence detected the difference between conspecific and heterospecific males. This was tested by a short (15 minutes) exposure to another fish in an isolated part of the aquarium. Recognition was defined as the ‘difference in a particular behaviour between the two conditions’. What was monitored was the swimming behaviour and trajectory (1 image per second) together with known social behaviours of this genus. The selection of these behaviours was further facilitated based on experimental set-ups of reproductive behaviour or the same species previously described by the same research team (Kéver et al. 2018).

The result was that O. nasuta females, for which it was expected that they would not hybridize, showed a different behaviour towards a con- or a heterospecific male. They interacted less with males of the other species. What was unexpected is that there was no difference in behaviour of the females whether they recognized a male or (control) female of their own species. This suggests that they did not detect differences in reproductive behaviour, but rather in the interactions between conspecifics. For females of O. ventralis, for which there are indications for hybridization in the wild, they did not find a difference in behaviour. Females of this species behaved identically with respect to the right and wrong males as well as towards the control females. Interestingly is thus that a complex pattern between species in the wild could be (partially) explained by the behaviour/interaction at first impression of the individuals of these species. 

References

Kéver L, Parmentier E, Derycke S, Verheyen E, Snoeks J, Van Steenberge M, Poncin P (2018) Limited possibilities for prezygotic barriers in the reproductive behaviour of sympatric Ophthalmotilapia species (Teleostei, Cichlidae). Zoology, 126, 71–81. https://doi.org/10.1016/j.zool.2017.12.001

Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics, 5, 288–298. https://doi.org/10.1038/nrg1316

Mendelson TC, Shaw KL (2012) The (mis)concept of species recognition. Trends in Ecology & Evolution, 27, 421–427. https://doi.org/10.1016/j.tree.2012.04.001

Nevado B, Fazalova V, Backeljau T, Hanssens M, Verheyen E (2011) Repeated Unidirectional Introgression of Nuclear and Mitochondrial DNA Between Four Congeneric Tanganyikan Cichlids. Molecular Biology and Evolution, 28, 2253–2267. https://doi.org/10.1093/molbev/msr043

Salzburger W (2018) Understanding explosive diversification through cichlid fish genomics. Nature Reviews Genetics, 19, 705–717. https://doi.org/10.1038/s41576-018-0043-9

Seehausen O (2004) Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19, 198–207. https://doi.org/10.1016/j.tree.2004.01.003

Steenberge MV, Jublier N, Kéver L, Gresham S, Derycke S, Snoeks J, Parmentier E, Poncin P, Verheyen E (2022) The initial response of females towards congeneric males matches the propensity to hybridise in Ophthalmotilapia. bioRxiv, 2021.08.07.455508, ver. 3 peer-reviewed and recommended by Peer Community in Zoology. https://doi.org/10.1101/2021.08.07.455508

The initial response of females towards congeneric males matches the propensity to hybridise in OphthalmotilapiaMaarten Van Steenberge, Noemie Jublier, Loic Kever, Sophie Gresham, Sofie Derycke, Jos Snoeks, Eric Parmentier, Pascal Poncin, Erik Verheyen<p style="text-align: justify;">Cichlid radiations often harbour closely related species with overlapping niches and distribution ranges. Such species sometimes hybridise in nature, which raises the question how can they coexist. This also holds f...Aquatic, Behavior, Evolution, Fish, Vertebrates, Veterinary entomologyEllen Decaestecker2021-08-09 12:22:49 View
20 Dec 2022
article picture

Non-target effects of ten essential oils on the egg parasitoid Trichogramma evanescens

Side effects of essential oils on pest natural enemies

Recommended by based on reviews by Olivier Roux and 2 anonymous reviewers

Integrated pest management relies on the combined use of different practices in time and/or space. The main objectives are to better control pests, not to induce too much selective pressure on resistance mechanisms present in pest populations and to minimize non-targeted effects on the ecosystem [1]. The efficiency of such a strategy requires at least additional or synergistic effects of chosen tools against targeted pest population in a specific environment. Any antagonistic effect on targeted or non-targeted organisms might reduce control effort to nil even worst.

Van Oudenhove et al [2] raised the question of the interaction between botanical pesticides (BPs) and egg parasitoids. Each of these two strategies used for pest management present advantages and are described as eco-friendly. First, the use of parasitoids is a great example of biological control and is massively used in a broad range of crop production in different ecological settings. Second, BPs, especially essential oils (EOs) used for a wide range of activities on pests (repellent, antifeedant, antiovipositant, ovicidal, larvicidal and simply pesticidal) present low-toxicity to non-target vertebrates and do not last too long in the environment. Combining these two strategies might be considered as a great opportunity to better pest control with minimized impact on environment. However, EOs used to target a wide range of pest might directly or indirectly affect parasitoids.

Van Oudenhove et al [2] focused their study on non-target effects of 10 essentials oils with pesticide potential on larval development and egg-seeking behaviour of five strains of the biocontrol agent Trichogramma evanescens. Within two laboratory experiments mimicing EOs fumigation (i.e. contactless EOs exposure), the authors evaluated (1) the toxicity of EOs on parasitoid development and (2) the repellent effect of these EOs on adult wasps. They confirmed that contactless exposure of EOs can (1) induce mortality during pre-imaginal development (more acute at the pupal stage) and (2) induce behavioural avoidance of EOs odour plume. These experiments ran onto five strains of T. evanescens also highlighted the variation of the effects of EOs among parasitoid strains.

The complex and dynamic interaction between pest, plant, parasitoid (a natural enemy) and their environment is disturbed by EOs. EOs plumes are also dynamic and variable upon the environmental conditions. The results of van Oudenhove et al. experimentally illustrate such a complexity by describing opposite effects (repellent and attractive) of the same EO on the behaviour of two T. evanescens strains. These contrasting results led us to question more broadly the non-target effects of pest management programs based on EOs fumigation on natural enemies.

Finally, the limits of this experimental study as discussed in the paper draw research avenues taking into account biotic variables such as plant chemical cues, odour plume dynamics, individual behavioural experiences and abiotic variables such as temperature, light and gravity [3] in laboratory, semi-field and field experiments. Facing such a complexity, modelling studies at fine scale in time and space have the operational objective to help farmers to choose the best IPM strategy regarding their environment (as illustrated for aphid population management in the recent review by Stell et al. [4]). But before such research effort to be undertaken, Van Oudenhove et al study [2] sounds like an alert for a cautious use of EOs in pest control programs that integrate biological control with parasitoids.

 

References

[1] Fauvergue, X. Biocontrôle Elements Pour Une Protection Agroecologique des Cultures; Éditions Quae: Versailles, France, 2020.

[2] van Oudenhove L, Cazier A, Fillaud M, Lavoir AV, Fatnassi H, Pérez G, Calcagno V. Non-target effects of ten essential oils on the egg parasitoid Trichogramma evanescens. bioRxiv 2022.01.14.476310, ver. 4 peer-reviewed and recommended by PCI Zoology. https://doi.org/10.1101/2022.01.14.476310

[3] Victor Burte, Guy Perez, Faten Ayed, Géraldine Groussier, Ludovic Mailleret, Louise van Oudenhove and Vincent Calcagno (2022) Up and to the light: intra- and interspecific variability of photo- and geo-tactic oviposition preferences in genus Trichogramma, Peer Community Journal, 2: e3. https://doi.org/10.24072/pcjournal.78

[4] Stell E, Meiss H, Lasserre-Joulin F, Therond O. Towards Predictions of Interaction Dynamics between Cereal Aphids and Their Natural Enemies: A Review. Insects 2022, 13, 479. https://doi.org/10.3390/insects13050479

Non-target effects of ten essential oils on the egg parasitoid Trichogramma evanescensLouise van Oudenhove, Aurélie Cazier, Marine Fillaud, Anne-Violette Lavoir, Hicham Fatnassi, Guy Pérez, Vincent Calcagno<p style="text-align: justify;">Essential oils (EOs) are increasingly used as biopesticides due to their insecticidal potential. This study addresses their non-target effects on a biological control agent: the egg parasitoid <em>Trichogramma evane...Behavior, Biochemistry, Biocontrol, Biodiversity, Computer modelling, Conservation biology, Demography/population dynamics, Development, Ecology, Insecta, Insectivores, Invertebrates, Life histories, Methodology, Pest management, Theoretical biolo...Cedric Pennetier2022-01-31 16:05:32 View
26 Apr 2023
article picture

Microbiome mediated tolerance to biotic stressors: a case study of the interaction between a toxic cyanobacterium and an oomycete-like infection in Daphnia magna

Multi-stress responses depend on the microbiome in the planktonic crustacean Daphnia

Recommended by and ORCID_LOGO based on reviews by Natacha Kremer and 2 anonymous reviewers

The critical role that gut microbiota play in many aspects of an animal’s life, including pathogen resistance, detoxification, digestion, and nutritional physiology, is becoming more and more apparent (Engel and Moran 2013; Lindsay et al., 2020). Gut microbiota recruitment and maintenance can be largely affected by the surrounding environment (Chandler et al., 2011; Callens et al., 2020). The environment may thus dictate gut microbiota composition and diversity, which in turn can affect organismal responses to stress. Only few studies have, however, taken the gut microbiota into account to estimate life histories in response to multiple stressors in aquatic systems (Macke et al., 2016). 

Houwenhuyse et al., investigate how the microbiome affects life histories in response to ecologically relevant single and multiple biotic stressors (an oomycete-like parasite, and a toxic cyanobacterium) in Daphnia magna (Houwenhuyse et al., 2023). Daphnia is an excellent model, because this aquatic system lends itself extremely well for gut microbiota transplantation and manipulation. This is due to the possibility to sterilize eggs (making them free of bacteria), horizontal transmission of bacteria from the environment, and the relative ease of culturing genetically similar Daphnia clones in large numbers. 

The authors use an elegant experimental design to show that the Daphnia gut microbial community differs when derived from a laboratory versus natural inoculum, the latter being more diverse. The authors subsequently show that key life history traits (survival, fecundity, and body size) depend on the stressors (and combination thereof), the microbiota (structure and diversity), and Daphnia genotype. A key finding is that Daphnia exposed to both biotic stressors show an antagonistic interaction effect on survival (being higher), but only in individuals containing laboratory gut microbiota. The exact mechanism remains to be determined, but the authors propose several interesting hypotheses as to why Daphnia with more diverse gut microbiota do less well. This could be due, for example, to increased inter-microbe competition or an increased chance of contracting opportunistic, parasitic bacteria. For Daphnia with less diverse laboratory gut microbiota, a monopolizing species may be particularly beneficial for stress tolerance. Alongside these interesting findings, the paper also provides extensive information about the gut microbiota composition (available in the supplementary files), which is a very useful resource for other researchers. 

Overall, this study reveals that multiple, interacting factors affect the performance of Daphnia under stressful conditions. Of importance is that laboratory studies may be based on simpler microbiota systems, meaning that stress responses measured in the laboratory may not accurately reflect what is happening in nature. 

REFERENCES

Callens M, De Meester L, Muylaert K, Mukherjee S, Decaestecker E. The bacterioplankton community composition and a host genotype dependent occurrence of taxa shape the Daphnia magna gut bacterial community. FEMS Microbiology Ecology. 2020;96(8):fiaa128. https://doi.org/10.1093/femsec/fiaa128

Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLOS Genetics. 2011;7(9):e1002272. https://doi.org/10.1371/journal.pgen.1002272

Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews. 2013;37(5):699-735. https://doi.org/10.1111/1574-6976.12025

Houwenhuyse S, Bulteel L, Vanoverberghe I, Krzynowek A, Goel N et al. Microbiome mediated tolerance to biotic stressors: a case study of the interaction between a toxic cyanobacterium and an oomycete-like infection in Daphnia magna. 2023. OSF, ver. 2 peer-reviewed and recommended by Peer Community in Zoology. https://doi.org/10.31219/osf.io/9n4mg

Lindsay EC, Metcalfe NB, Llewellyn MS. The potential role of the gut microbiota in shaping host energetics and metabolic rate. Journal of Animal Ecology. 2020;89(11):2415-2426. https://doi.org/10.1111/1365-2656.13327

Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E. Life history and eco-evolutionary dynamics in light of the gut microbiota. Oikos. 2017;126(4):508-531. https://doi.org/10.1111/oik.03900

Microbiome mediated tolerance to biotic stressors: a case study of the interaction between a toxic cyanobacterium and an oomycete-like infection in *Daphnia magna*Shira Houwenhuyse*, Lore Bulteel*, Isabel Vanoverberghe, Anna Krzynowek, Naina Goel, Manon Coone, Silke Van den Wyngaert, Arne Sinnesael, Robby Stoks & Ellen Decaestecker<p style="text-align: justify;">Organisms are increasingly facing multiple, potentially interacting stressors in natural populations. The ability of populations coping with combined stressors depends on their tolerance to individual stressors and ...Aquatic, Biology, Crustacea, Ecology, Life histories, SymbiosisBertanne Visser2021-05-17 16:18:18 View