Submit a preprint

Latest recommendationsrsstwitter

IdTitle▲AuthorsAbstractPictureThematic fieldsRecommenderReviewersSubmission date
08 Feb 2022
article picture

The initial response of females towards congeneric males matches the propensity to hybridise in Ophthalmotilapia

Experimental evidence for asymmetrical species recognition in East African Ophthalmotilapia cichlids

Recommended by based on reviews by George Turner and 2 anonymous reviewers

I recommend the Van Steenberge et al. study. With over 2000 endemic species, the East African cichlids are a well-established model system in speciation research (Salzburger 2018) and several models have been proposed and tested to explain how these radiations formed (Kocher 2004). Hybridization was shown to be a main driver of the rapid speciation and adaptive radiations of the East African Cichlid fishes (Seehausen 2004). However, it is obvious that unrestrained hybridization also has the potential to reduce taxonomic diversity by erasing species barriers. In the classical model of cichlid evolution, special emphasis was placed on mate preference (Kocher 2004). However, no attention was placed on species recognition, which was implicitly assumed. There is, however, more research needed on what species recognition means, especially in radiating lineages such as cichlids. In a previous study, Nevado et al. 2011 found traces of asymmetrical hybridization between members of the Lake Tanganyika radiation: the genus Ophthalmotilapia. This recommended study by Van Steenberge et al. is based on Nevado et al. (2011), which detected that in one genus of Ophthalmotilapia mitochondrial DNA ‘typical’ for one of the four species (O. nasuta) was also found in three other species (O. ventralis, O. heterodonta, and O. boops). The authors suggested that this could be explained by the fact that females of the three other species accepted O. nasuta males, but that O. nasuta females were more selective and accepted only conspecifc males. This could hence be due to asymmetric mate preferences, or by asymmetric abilities for species recognition. 

This is exactly what the current study by Van Steenberge et al. did. They tested the latter hypothesis by presenting females of two different Ophthalmotilapia species with con- and heterospecific males. This was tested through experiments, making use of wild specimens of two species: O. nasuta and O. ventralis. The authors assumed that if they performed classical “choice-experiments”, they would not notice the recognition effects, given that females would just select preferred, most likely conspecific, males. Instead, specimens were only briefly presented to other fishes since the authors wanted to compare differences in the ability for ‘species recognition’. In this, the authors followed Mendelson and Shaw (2012) who used “a measurable difference in behavioural response towards conspecifics as compared to heterospecifics’’ as a definition for recognition. Instead of the focus on selection/preference, they investigated if females of different species behaved differently, and hence detected the difference between conspecific and heterospecific males. This was tested by a short (15 minutes) exposure to another fish in an isolated part of the aquarium. Recognition was defined as the ‘difference in a particular behaviour between the two conditions’. What was monitored was the swimming behaviour and trajectory (1 image per second) together with known social behaviours of this genus. The selection of these behaviours was further facilitated based on experimental set-ups of reproductive behaviour or the same species previously described by the same research team (Kéver et al. 2018).

The result was that O. nasuta females, for which it was expected that they would not hybridize, showed a different behaviour towards a con- or a heterospecific male. They interacted less with males of the other species. What was unexpected is that there was no difference in behaviour of the females whether they recognized a male or (control) female of their own species. This suggests that they did not detect differences in reproductive behaviour, but rather in the interactions between conspecifics. For females of O. ventralis, for which there are indications for hybridization in the wild, they did not find a difference in behaviour. Females of this species behaved identically with respect to the right and wrong males as well as towards the control females. Interestingly is thus that a complex pattern between species in the wild could be (partially) explained by the behaviour/interaction at first impression of the individuals of these species. 


Kéver L, Parmentier E, Derycke S, Verheyen E, Snoeks J, Van Steenberge M, Poncin P (2018) Limited possibilities for prezygotic barriers in the reproductive behaviour of sympatric Ophthalmotilapia species (Teleostei, Cichlidae). Zoology, 126, 71–81.

Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics, 5, 288–298.

Mendelson TC, Shaw KL (2012) The (mis)concept of species recognition. Trends in Ecology & Evolution, 27, 421–427.

Nevado B, Fazalova V, Backeljau T, Hanssens M, Verheyen E (2011) Repeated Unidirectional Introgression of Nuclear and Mitochondrial DNA Between Four Congeneric Tanganyikan Cichlids. Molecular Biology and Evolution, 28, 2253–2267.

Salzburger W (2018) Understanding explosive diversification through cichlid fish genomics. Nature Reviews Genetics, 19, 705–717.

Seehausen O (2004) Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19, 198–207.

Steenberge MV, Jublier N, Kéver L, Gresham S, Derycke S, Snoeks J, Parmentier E, Poncin P, Verheyen E (2022) The initial response of females towards congeneric males matches the propensity to hybridise in Ophthalmotilapia. bioRxiv, 2021.08.07.455508, ver. 3 peer-reviewed and recommended by Peer Community in Zoology.

The initial response of females towards congeneric males matches the propensity to hybridise in OphthalmotilapiaMaarten Van Steenberge, Noemie Jublier, Loic Kever, Sophie Gresham, Sofie Derycke, Jos Snoeks, Eric Parmentier, Pascal Poncin, Erik Verheyen<p style="text-align: justify;">Cichlid radiations often harbour closely related species with overlapping niches and distribution ranges. Such species sometimes hybridise in nature, which raises the question how can they coexist. This also holds f...Aquatic, Behavior, Evolution, Fish, Vertebrates, Veterinary entomologyEllen Decaestecker2021-08-09 12:22:49 View
03 Jul 2020
article picture

The 'Noble false widow' spider Steatoda nobilis is an emerging public health and ecological threat

How the noble false widow spider Steatoda nobilis can turn out to be a rising public health and ecological concern

Recommended by based on reviews by Michel Dugon and 2 anonymous reviewers

"The noble false widow spider Steatoda nobilis is an emerging public health and ecological threat" by Clive Hambler (2020) is an appealing article discussing important aspects of the ecology and distribution of a medically significant spider, and the health concerns it raises.
By contrast to previous studies (Dunbar et al., 2018; Warell et al., 1991; Bauer et al., 2019; BBC 2013, 2018), this article, with its extensive media and scientific literature review, shows that S. nobilis (Thorell, 1875) is now an important health concern in Britain. Indeed, the author shows that the population of this spider has significantly increased, at least since 1990, in both southern Britain and Ireland where it has remained greatly under-recorded. In these areas, S. nobilis is now often the dominant spider on and in buildings, in places in which there is a high a risk of bites, some of which are likely to be severe, in humans, with these bites largely under-recorded. According to Clive Hambler "There is thus a possibility of bites being left without adequate rapid treatment and monitoring - with a low but non-trivial risk of necrosis or sepsis".
The author points that one of the reasons for the lack of awareness of the risk is that arachnologists typically have a conflict of interest between the conservation of the species they study and raising concerns about spiders. This may lead them to understate the risk. Clive Hambler therefore calls for a closer, appropriately weighted attention to the frequency and risk of bites, based on all the information available, rather than being "dismissive of the possibilities of bites and impacts simply because many media reports contain major errors or alarmism". He also argues that the British Arachnological Society’s guidance on "false widow spiders" "needs substantive revision, both in terms of the likelihood of bites and the severity of effects."
Indeed, the author demonstrates that many inaccuracies have been published (see Table 3 of his manuscript) and, for each, he provides a correction and/or an alternative opinion. At the end of this MS (see Table 4), he provides testable speculations and hypotheses. As he rightly points out, testing is very important to fuel the debate, because "It will be very difficult to get a balanced and proportionate debate and response for such a confused and emotive issue, especially with the many misleading popular reports." He also suggests that research will require interdisciplinary collaboration between experts in many domains, including pathologists, immunologists, clinicians, ecologists, arachnologists, psychologists, physiologists, climatologists and epidemiologists.
This preprint is clearly descriptive and speculative, but well-written, interesting and certainly useful in terms of a review of the biology, ecology, potential dangerousness and distribution of S. nobilis, particularly for future studies. There is no doubt that arachnologists, the medical community and the media will be interested in this article, which is intended to sound the alarm. Naturalists in general will also be interested in this manuscript because it is an original and successful attempt to increase knowledge about a particular taxon based on diverse information sources.
The structure of the MS is a bit odd, with a certain toing-and-froing between the ecology/biology/distribution of the spider and the risks, dangerousness and venom of bites, but this is not problematic, as shown by the reviews of the manuscript - three reviews (available below) were written, two by specialists in this noble false widow (Michel Dugon and another researcher who wished to remain anonymous).
Despite the controversy surrounding certain of the statements made in this article, I therefore strongly recommend it and look forward to seeing the identified research priorities addressed.


[1] Hambler, C. (2020). The “Noble false widow” spider Steatoda nobilis is an emerging public health and ecological threat. OSF Preprints, axbd4, ver. 4 peer-reviewed and recommended by PCI Zoology. doi: 10.31219/
[2] Dunbar J.P., Afoullouss S., Sulpice R., Dugon M.M. (2018) Envenomation by the noble false widow spider Steatoda nobilis (Thorell, 1875) - five new cases of steatodism from Ireland and Great Britain. Clin Toxicol (Phila). 56(6):433-435. doi: 10.1080/15563650.2017.1393084
[3] Warrell D.A., Shaheen J., Hillyard P.D., Jones D. (1991) Neurotoxic envenoming by an immigrant spider (Steatoda nobilis) in southern England. Toxicon. 29(10):1263-5. doi: 10.1016/0041-0101(91)90198-Z
[4] Bauer, T., Feldmeier, S., Krehenwinkel, H., Wieczorrek, C., Reiser, N. and Dreitling, R. (2019) Steatoda nobilis, a false widow on the rise: a synthesis of past and current distribution trends. NeoBiota 42: 19–43. doi: 10.3897/neobiota.42.31582
[5] BBC (2013). False widow spider bites footballer Steve Harris. Accessed 1 November 2018.
[6] BBC (2018). False widow spider infestation schools to remain shut. Accessed 19 December 2018.

The 'Noble false widow' spider Steatoda nobilis is an emerging public health and ecological threatHambler, C.<p>*Steatoda nobilis*, the 'Noble false widow' spider, has undergone massive population growth in southern Britain and Ireland, at least since 1990. It is greatly under-recorded in Britain and possibly globally. Now often the dominant spider on an...Arachnids, Behavior, Biogeography, Biological invasions, Conservation biology, Demography/population dynamics, Ecology, Medical entomology, Methodology, Pest management, Toxicology, Veterinary entomologyEtienne Bilgo2019-06-28 18:26:05 View
22 Jul 2020
article picture

The open bar is closed: restructuration of a native parasitoid community following successful control of an invasive pest.

Raise and fall of an invasive pest and consequences for native parasitoid communities

Recommended by based on reviews by Kévin Tougeron and Miguel González Ximénez de Embún

Host-parasitoid interactions have been the focus of extensive ecological research for decades. One the of the major reasons is the importance host-parasitoid interactions play for the biological control of crop pests. Parasitoids are the main natural regulators for a large number of economically important pest insects, and in many cases they could be the only viable crop protection strategy. Parasitoids are also integral part of complex food webs whose structure and diversity display large spatio-temporal variations [1-3]. With the increasing globalization of human activities, the generalized spread and establishment of invasive species is a major cause of disruption in local community and food web spatio-temporal dynamics. In particular, the deliberate introduction of non-native parasitoids as part of biological control programs, aiming the suppression of established, and also highly invasive crop pests, is a common practice with potentially significant, yet poorly understood effects on local food web dynamics (e.g. [4]).
In their study, Muru et al. [5] took advantage of an existing biological control program focusing on the Asian chestnut gall wasp Dryocosmus kuriphilus, an invasive (and highly damaging) pest of chestnut trees. The species is currently a successful invader in many geographic regions, including southern France, where local parasitoid communities failed to provide an adequate control since its widespread establishment in 2010 [6]. In response, the non-native parasitoid species Torymus sinensis, which is highly-specific to the Asian chestnut gall wasp, was massively released in commercial chestnut orchards across several regions in France and the island of Corsica. The pest population outbreak was successfully contained, and thanks to the vast amount of host-parasitoid interaction data collected as part of the program, the authors were able to explore the effects of the large fluctuations in Asian chestnut gall wasp natural abundances on native parasitoid communities, immediately before, and up to five years following the introduction of its natural enemy T. sinensis.
Using co-occurrence and clustering analyses, Muru et al. [5] demonstrate that the invasion and the consecutive (efficient) control of the Asian chestnut gall wasp by the parasitoid T. sinensis have a significant impact on the structure of local parasitoid food webs. In particular, following decline in the Asian chestnut gall wasp’s populations, native parasitoids markedly switched to alternative hosts, most likely due to their respectively higher relative abundances. This pattern seemed to be driven by the degree of generalism in native parasitoid species. Indeed, when its abundances were still relatively high, the Asian chestnut gall wasp was primarily attacked by species capable of exploiting a broad range of hosts, while at low population densities only specialist parasitoids such as Mesolobus sericeus were able to persist and compete with the non-native T. sinensis.
The current study is important for two major reasons. First, it underscores the value of long-term species interaction data in order to understand the dynamic nature of food webs, namely their structural flexibility in response to changes in the environment or, as in this case, large fluctuation in abundances of a major pest species. In this context, biological control programs could be a great source of data for exploring long-term, large-scale dynamics of species interactions, and their use in ecological studies deserves to be further emphasized. Second, the study adds to the increasing empirical evidence that mobile generalist foragers can display adaptive, frequency-dependent switching behaviour ([1], [7]), which has been suggested to act as a key stabilizing mechanism in food webs by buffering fluctuating population dynamics at larger spatial scales ([8- 10]).
However, the timing of such buffering seems important, especially in systems such as commercial chestnut orchards. Despite their capacity to adaptively switch their foraging behaviour, the response of the native parasitoid communities to the new, unfamiliar resource was not fast enough in order to contain the primary outbreak under an appropriate damage threshold, thus requiring the introduction of the more specialized parasitoid T. sinensis. Nevertheless, based on current ecological theory, results presented by Muru et al. [5] suggest that the response of native parasitoid community to fluctuating host dynamics – i.e. shifts in parasitoid foraging behaviour based on their traits – could be predictable. This is encouraging considering the growing impact of biological invasions and insect pest outbreaks, but also the need to implement efficient, yet sustainable strategies for crop protection. Future studies would show at what extent observations by Muru et al. [5] are generalizable over longer time periods or other model systems. Noticeably, better understanding about population dynamics and interactions with the broader community of hosts available across habitats should allow to fine-tune predictions about parasitoids’ response to fluctuating resources.


[1] Eveleigh ES, McCann KS, McCarthy PC, Pollock SJ, Lucarotti CJ, Morin B, McDougall GA, Strongman DB, Huber JT, Umbanhowar J, Faria LDB (2007). Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proc. Natl. Acad. Sci. USA 104, 16976-16981. doi: 10.1073/pnas.0704301104
[2] Tylianakis JM, Tscharntke T, Lewis OT (2007). Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202-205. doi: 10.1038/nature05429
[3] Murakami M, Hirao T, Kasei A (2008). Effects of habitat configuration on host–parasitoid food web structure. Ecol. Res. 23, 1039-1049. doi: 10.1007/s11284-008-0478-0
[4] Geslin B, Gauzens B, Baude M, Dajoz I, Fontaine C, Henry M, Ropars L, Rollin O, Thébault E, Vereecken NJ (2016). Massively introduced managed species and their consequences for plant–pollinator interactions. Adv. Ecol. Res. 57, 147-199. doi: 10.1016/bs.aecr.2016.10.007
[5] Muru D, Borowiec N, Thaon M, Ris N, Viciriuc M I, Warot S, Vercken E (2020) The open bar is closed: restructuration of a native parasitoid community following successful control of an invasive pest. bioRxiv, 2019.12.20.884908, ver. 6 peer-reviewed and recommended by PCI Zoology. doi: 10.1101/2019.12.20.884908
[6] Borowiec N, Thaon M, Brancaccio L, Warot S, Vercken E, Fauvergue X, Ris N, Malausa J-C (2014). Classical biological control against the chestnut gall wasp 'Dryocosmus kuriphilus' (Hymenoptera, Cynipidae) in France. Plant Prot. Q. 29, 7-10.
[7] Bartley TJ, McCann KS, Bieg C, Cazelles K, Granados M, Guzzo MM, MacDougall AS, Tunney TD, McMeans BC (2019). Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354. doi: 10.1038/s41559-018-0772-3
[8] Kondoh M (2003). Foraging adaptation and the relationship between food-web complexity and stability. Science. 299, 1388-1391. doi: 10.1126/science.1079154
[9] McCann KS, Rooney N (2009). The more food webs change, the more they stay the same. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1789-801. doi: 10.1098/rstb.2008.0273
[10] Valdovinos FS, Ramos-Jiliberto R, garay-Narváez L, Urbani P, Dunne JA (2010). Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol. Lett. 13, 1546-1559. doi: 10.1111/j.1461-0248.2010.01535.x

The open bar is closed: restructuration of a native parasitoid community following successful control of an invasive pest.David Muru, Nicolas Borowiec, Marcel Thaon, Nicolas Ris, Madalina Ionela Viciriuc, Sylvie Warot, Elodie Vercken<p>The rise of the Asian chestnut gall wasp *Dryocosmus kuriphilus* in France has benefited the native community of parasitoids originally associated with oak gall wasps by becoming an additional trophic subsidy and therefore perturbing population...Biocontrol, Biological invasions, Ecology, InsectaStefaniya Kamenova2019-12-31 09:08:49 View
14 Nov 2023
article picture

Time-course of antipredator behavioral changes induced by the helminth Pomphorhynchus laevis in its intermediate host Gammarus pulex: the switch in manipulation according to parasite developmental stage differs between behaviors

Exploring manipulative strategies of a trophically-transmitted parasite across its ontogeny

Recommended by based on reviews by Adèle Mennerat and 1 anonymous reviewer

The intricate relationships between parasites and their hosts often involve a choreography of behavioral changes, with parasites manipulating their hosts in a way that enhances - or seemingly enhances – their transmission (Hughes et al., 2012; Moore, 2002; Poulin, 2010). Host manipulation is increasingly acknowledged as a pervasive adaptive transmission strategy employed by parasites, and as such is one of the most remarkable manifestations of the extended phenotype (Dawkins, 1982).

In this laboratory study, Rigaud et al. (2023) delved into the time course of antipredator behavioral modifications induced by the acanthocephalan Pomphorhynchus laevis in its amphipod intermediate host Gammarus pulex. This system has a good foundation of prior knowledge (Bakker et al., 2017; Fayard et al., 2020; Perrot-Minnot et al., 2023), nicely drawn upon for the present work. This parasite orchestrates a switch from predation suppression, during the noninfective phase, to predation enhancement upon maturation. Specifically, G. pulex infected with the non-infective acanthella stage of the parasite can exhibit increased refuge use and reduced activity compared to uninfected individuals (Dianne et al., 2011, 2014), leading to decreased predation by trout (Dianne et al., 2011). In contrast, upon reaching the infective cystacanth stage, the parasite can enhance the susceptibility of its host to trout predation (Dianne et al., 2011).

The present work aimed to understand the temporal sequence of these behavioral changes across the entire ontogeny of the parasite. The results confirmed the protective role of P. laevis during the acanthella stage, wherein infected amphipods exhibited heightened refuge use. This protective manipulation, however, became significant only later in the parasite's ontogeny, suggesting a delayed investment strategy, possibly influenced by the extended developmental time of P. laevis. The protective component wanes upon reaching the cystacanth stage, transitioning into an exposure strategy, aligning with theoretical predictions and previous empirical work (Dianne et al., 2011; Parker et al., 2009). The switch was behavior-specific. Unlike the protective behavior, a decline in the amphipod activity rate manifested early in the acanthella stage and persisted throughout development, suggesting potential benefits of reduced activity for the parasite across multiple stages. Furthermore, the findings challenge previous assumptions regarding the condition-dependency of manipulation, revealing that the parasite-induced behavioral changes predominantly occurred in the presence of cues signaling potential predators. Finally, while amphipods infected with acanthella stages displayed survival rates comparable to their uninfected counterparts, increased mortality was observed in those infected with cystacanth stages.

Understanding the temporal sequence of host behavioral changes is crucial for deciphering whether it is adaptive to the parasite or not. This study stands out for its meticulous examination of multiple behaviors over the entire ontogeny of the parasite highlighting the complexity and condition-dependent nature of manipulation. The protective-then-expose strategy emerges as a dynamic process, finely tuned to the developmental stages of the parasite and the ecological challenges faced by the host. The delayed emergence of protective behaviors suggests a strategic investment by the parasite, with implications for the host's survival and the parasite's transmission success. The differential impact of infection on refuge use and activity rate further emphasizes the need for a multidimensional approach in studying parasitic manipulation (Fayard et al., 2020). This complexity demands further exploration, particularly in deciphering how trophically-transmitted parasites shape the behavioral landscape of their intermediate hosts and its temporal dynamic (Herbison, 2017; Perrot-Minnot & Cézilly, 2013).  As we discover the many subtleties of these parasitic manipulations, new avenues of research are unfolding, promising a deeper understanding of the ecology and evolution of host-parasite interactions.


Bakker, T. C. M., Frommen, J. G., & Thünken, T. (2017). Adaptive parasitic manipulation as exemplified by acanthocephalans. Ethology, 123(11), 779–784.

Dawkins, R. (1982). The extended phenotype: The long reach of the gene (Reprinted). Oxford University Press.

Dianne, L., Perrot-Minnot, M.-J., Bauer, A., Gaillard, M., Léger, E., & Rigaud, T. (2011). Protection first then facilitation: A manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution, 65(9), 2692–2698.

Dianne, L., Perrot-Minnot, M.-J., Bauer, A., Guvenatam, A., & Rigaud, T. (2014). Parasite-induced alteration of plastic response to predation threat: Increased refuge use but lower food intake in Gammarus pulex infected with the acanothocephalan Pomphorhynchus laevis. International Journal for Parasitology, 44(3–4), 211–216.

Fayard, M., Dechaume‐Moncharmont, F., Wattier, R., & Perrot‐Minnot, M. (2020). Magnitude and direction of parasite‐induced phenotypic alterations: A meta‐analysis in acanthocephalans. Biological Reviews, 95(5), 1233–1251.

Herbison, R. E. H. (2017). Lessons in Mind Control: Trends in Research on the Molecular Mechanisms behind Parasite-Host Behavioral Manipulation. Frontiers in Ecology and Evolution, 5, 102.

Hughes, D. P., Brodeur, J., & Thomas, F. (2012). Host manipulation by parasites. Oxford university press.

Moore, J. (2002). Parasites and the behavior of animals. Oxford University Press.

Parker, G. A., Ball, M. A., Chubb, J. C., Hammerschmidt, K., & Milinski, M. (2009). When should a trophically transmitted parasite manipulate its host? Evolution, 63(2), 448–458.

Perrot-Minnot, M.-J., & Cézilly, F. (2013). Investigating candidate neuromodulatory systems underlying parasitic manipulation: Concepts, limitations and prospects. Journal of Experimental Biology, 216(1), 134–141.

Perrot-Minnot, M.-J., Cozzarolo, C.-S., Amin, O., Barčák, D., Bauer, A., Filipović Marijić, V., García-Varela, M., Servando Hernández-Orts, J., Yen Le, T. T., Nachev, M., Orosová, M., Rigaud, T., Šariri, S., Wattier, R., Reyda, F., & Sures, B. (2023). Hooking the scientific community on thorny-headed worms: Interesting and exciting facts, knowledge gaps and perspectives for research directions on Acanthocephala. Parasite, 30, 23.

Poulin, R. (2010). Parasite Manipulation of Host Behavior. In Advances in the Study of Behavior (Vol. 41, pp. 151–186). Elsevier.

Rigaud, T., Balourdet, A., & Bauer, A. (2023). Time-course of antipredator behavioral changes induced by the helminth Pomphorhynchus laevis in its intermediate host Gammarus pulex: The switch in manipulation according to parasite developmental stage differs between behaviors. bioRxiv, ver. 6 peer-reviewed and recommended by Peer Community in Zoology.

Time-course of antipredator behavioral changes induced by the helminth *Pomphorhynchus laevis* in its intermediate host *Gammarus pulex*: the switch in manipulation according to parasite developmental stage differs between behaviorsThierry Rigaud, Aude Balourdet, Alexandre Bauer<p style="text-align: justify;">Many trophically transmitted parasites with complex life cycles manipulate their intermediate host antipredatory defenses in ways facilitating their transmission to final host by predation. Some parasites also prote...Aquatic, Behavior, Crustacea, Invertebrates, ParasitologyThierry Lefevre2023-06-20 15:49:32 View
14 Dec 2023
article picture

Transcriptomic responses of sponge holobionts to in situ, seasonal anoxia and hypoxia

Future oceanic conditions could leave sponge holobionts breathless – but they won’t let that stop them

Recommended by ORCID_LOGO based on reviews by Maria Lopez Acosta and 2 anonymous reviewers

It is now widely accepted that anthropogenic climate change is a severe threat to biodiversity, ecosystem function and associated ecosystem services. Assessing the vulnerability of species and predicting their response to future changes has become a priority for environmental biology (Williams et al. 2020).

Over the last few decades, oxygen concentrations in both the open ocean and coastal waters have been declining steadily as the result of multiple anthropogenic activities. This global trends towards hypoxia is expected to continue in the future, causing a host of negative effects on marine ecosystems. Oxygen is indeed crucial to many biological processes in the ocean, and its decrease could have strong impacts on biogeochemical cycles, and therefore on marine productivity and biodiversity (Breitburg et al. 2018).

Whenever facing such drastic environmental changes, all organisms are expected to have some intrinsic ability to adapt. At shorter than evolutionary timescales, ecological plasticity and the eco-physiological processes that sustain it could constitute important adaptive mechanisms (Williams et al. 2020)

Marine sponges seem particularly well-adapted to oxygen deficiency, as some species can survive seasonal anoxia for several months. This paper by Strehlow et al. (2023) examines the mechanisms allowing this exceptional tolerance. Focusing on two species of sponges, they used transcriptomics to assess how gene expression by sponges, by their mitochondria, or by their unique and species-specific microbiome could facilitate this trait. Their results suggest that sponge holobionts maintain metabolic activity under anoxic conditions while displaying shock response, therefore not supporting the hypothesis of sponge dormancy. Furthermore, hypoxia and anoxia seemed to influence gene expression in different ways, highlighting the complexity of sponge response to deoxygenation. As often, their exciting results raise as many questions as they provide answers and pave the way for more research regarding how anoxia tolerance in marine sponges could give them an advantage in future oceanic environmental conditions.


Breitburg et al. (2018): Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240. 

Strehlow et al. (2023): Transcriptomic responses of sponge holobionts to in situ, seasonal anoxia and hypoxia. bioRxiv, 2023.02.27.530229, ver. 4 peer-reviewed and recommended by Peer Community in Zoology. 

Williams et al. (2008) Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change. PLOS Biology 6(12): e325. 

Williams et al. (2020):  Research priorities for natural ecosystems in a changing global climate. Global Change Biology 26: 410–416. 

Transcriptomic responses of sponge holobionts to in situ, seasonal anoxia and hypoxiaBrian W Strehlow, Astrid Schuster, Warren R Francis, Lisa Eckford-Soper, Beate Kraft, Rob McAllen, Ronni Nielsen, Susanne Mandrup, Donald E Canfield<p>Deoxygenation can be fatal for many marine animals; however, some sponge species are tolerant of hypoxia and anoxia. Indeed, two sponge species, <em>Eurypon </em>sp. 2 and <em>Hymeraphia stellifera</em>, survive seasonal anoxia for months at a ...Biology, Ecology, Genetics/Genomics, Invertebrates, Marine, SymbiosisLoïc N. Michel Maria Lopez Acosta2023-05-12 16:22:47 View
25 Aug 2021
article picture

Up and to the light: intra- and interspecific variability of photo- and geo-tactic oviposition preferences in genus Trichogramma

New insights into oviposition preference of 5 Trichogramma species

Recommended by ORCID_LOGO based on reviews by Kévin Tougeron and Eveline C. Verhulst

Insects exhibit a great diversity of life-history traits that often vary not only between species but also between populations of the same species (Flatt and Heyland, 2011). A better understanding of the variation in these traits can be of paramount importance when it comes to species of economic and agricultural interest (Wilby and Thomas, 2002). In particular, the control of the development and expansion of agricultural pests generally requires a good understanding of the parameters that favour the reproduction of these pests and/or the reproduction of the species used to control them (Bianchi et al., 2013; Gäde and Goldsworthy, 2003).

Parasitoid wasps of the genus Trichogramma are a classic example of insects involved in pest control (Smith, 1996). This genus comprises over 200 species worldwide, which have been used to control populations of a wide range of lepidopteran pests since the 1900s (Flanders, 1930; Hassan, 1993). Despite its common use, the egg-laying preference of this genus is only partially known. For example, all Trichogramma species are often thought to have positive phototaxis (or negative geotaxis) (e.g. Brower & Cline, 1984; van Atta et al., 2015), but comprehensive studies simultaneously testing this (or other) parameter among Trichogramma species and populations remain rare.

This is exactly the aim of the present study (Burte et al., 2021). Using a new experimental approach based on automatic image analysis, the authors compared the photo- and geo-tactic oviposition preference among 5 Trichogramma species from 25 populations. Their results first confirm that most Trichogramma species and populations prefer light to shade, and higher to lower positions for oviposition. Interestingly, they also reveal that the levels of preference for light and gravity show inter- and intraspecific variation (probably due to local adaptation to different strata) and that both preferences tend to relax over time.

Overall, this study provides important information for improving the use of Trichogramma species as biological agents. For example, it may help to establish breeding lines adapted to the microhabitat and/or growing parts of plants on which agricultural pests lay eggs most. Similarly, it suggests that the use of multiple strains with different microhabitat selection preferences could lead to better coverage of host plants, as well as a reduction in intraspecific competition in the preferred parts. Finally, this study provides a new methodology to efficiently and automatically study oviposition preferences in Trichogramma, which could be used in other insects with a particularly small size.


Bianchi, F. J. J. A., Schellhorn, N. A. and Cunningham, S. A. (2013). Habitat functionality for the ecosystem service of pest control: reproduction and feeding sites of pests and natural enemies. Agricultural and Forest Entomology, 15, 12–23.

Burte V., Perez G., Ayed F., Groussier G., Mailleret L, van Oudenhove L. and Calcagno V. (2021). Up and to the light: intra- and interspecific variability of photo-and geo-tactic oviposition preferences in genus Trichogramma. bioRxiv, 2021.03.30.437671, ver. 4 peer-reviewed and recommended by PCI Zoology.

Brower, J. H. and Cline, L. D. (1984). Response of Trichogramma pretiosum and T. evanescens to Whitelight, Blacklight or NoLight Suction Traps. The Florida Entomologist, 67, 262–268.

Flanders, S. E. (1930). Mass production of egg parasites of the genus Trichogramma. Hilgardia, 4, 465–501.

Flatt, T. and Heyland, A. (2011). Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs. Oxford University Press.

Gäde, G. and Goldsworthy, G. J. (2003). Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Management Science, 59, 1063–1075.

Hassan, S. A. (1993). The mass rearing and utilization of Trichogramma to control lepidopterous pests: Achievements and outlook. Pesticide Science, 37, 387–391.

Smith, S. M. (1996). Biological Control with Trichogramma : Advances, Successes, and Potential of Their Use. Annual Review of Entomology, 41, 375–406.

van Atta, K. J., Potter, K. A. and Woods, H. A. (2015). Effects of UV-B on Environmental Preference and Egg Parasitization by Trichogramma Wasps (Hymenoptera: Trichogrammatidae). Journal of Entomological Science, 50, 318–325.

Wilby, A. and Thomas, M. B. (2002). Natural enemy diversity and pest control: patterns of pest emergence with agricultural intensification. Ecology Letters, 5, 353–360.

Up and to the light: intra- and interspecific variability of photo- and geo-tactic oviposition preferences in genus TrichogrammaBurte, V., Perez, G., Ayed, F. , Groussier, G., Mailleret, L., van Oudenhove, L. and Calcagno, V.<p>Trichogramma are parasitic microwasps much used as biological control agents. The genus is known to harbor tremendous diversity, at both inter- and intra-specific levels. The successful selection of Trichogramma strains for biocontrol depends o...Behavior, Biocontrol, Biodiversity, Ecology, Insecta, Parasitology, Pest management, Systematics, TerrestrialJoël Meunier Kévin Tougeron, Eveline C. Verhulst2021-04-02 16:10:28 View
26 Aug 2022
article picture

Within and among population differences in cuticular hydrocarbons in the seabird tick Ixodes uriae

Seabird tick diversification and cuticular hydrocarbons

Recommended by based on reviews by 2 anonymous reviewers

Ticks are notorious vectors of diseases in humans and other vertebrates. Much effort has been expended to understand tick diversity and ecology with the aim of managing their populations to alleviate the misery they bring. Further, the fundamental question of whether ticks are usually host generalists or host specialists has been debated at length and is important both for understanding the mechanisms of their diversification as well as for focusing control of ticks [1].

One elegant resolution of this question is to consider most tick species to be global generalists but local specialists [1]. This is well illustrated in a series of studies of the seabird tick, Ixodes uriae, which is comprised of host-specific races that show genetic [2], morphological [3] and host performance [4] differences associated with the seabirds they feed on. Such a pattern has clear ramifications for sympatric speciation; however, the factors that potentially act to drive these differences have remained elusive.

Dupraz et al. [5] have now made intriguing and important steps toward bridging the gap between demonstrating local patterns of tick host association and understanding the physiological mechanisms that may facilitate such divergences. They collected I. uriae ticks from the nests of two seabirds – Atlantic puffins and common guillemots – on the north side of Iceland. Four populations of ticks were sampled, with one island providing both puffin ticks and guillemot ticks, to give two tick populations from each of the two seabird host species. They then washed the ticks in solvent and analyzed the dissolved cuticular hydrocarbons (CHCs) using GC mass spectrometry, revealing 22 different hydrocarbon compounds common to most of these samples. CHCs are known to be important across arthropods for a variety of functions ranging from reducing water loss to facilitating communication and recognition between individuals with species.

Dupraz et al. [5] found three hydrocarbons that distinguished puffin ticks most consistently from guillemot ticks. A cross-validation test for host type also assigned 75% of the tick pools to the seabird host of origin. However, with these limited sample sizes, statistical analysis revealed no significant difference in CHC profiles between the host types, although a tendency was evident. Nonetheless, this study revealed a number of potentially diagnostic CHCs for tick host type, as well as some that may be more diagnostic of locations. This provides a fascinating and actionable foundation for further work using additional sites and host types, as well as an entry point into discerning the mechanisms at play in producing the diversity, complexity and adaptability that make ticks such medical menaces.


[1]  McCoy, K.D., Léger, E., Dietrich, M., 2013. Host specialization in ticks and transmission of tick-borne diseases: a review. Front. Cell. Infect. Microbiol. 3.

[2]  McCoy, K.D., Chapuis, E., Tirard, C., Boulinier, T., Michalakis, Y., Bohec, C.L., Maho, Y.L., Gauthier-Clerc, M., 2005. Recurrent evolution of host-specialized races in a globally distributed parasite. Proc. R. Soc. B Biol. Sci. 272, 2389–2395.

[3]  Dietrich, M., Beati, L., Elguero, E., Boulinier, T., McCoy, K.D., 2013. Body size and shape evolution in host races of the tick Ixodes uriae. Biol. J. Linn. Soc. 108, 323–334.

[4]  Dietrich, M., Lobato, E., Boulinier, T., McCoy, K.D., 2014. An experimental test of host specialization in a ubiquitous polar ectoparasite: a role for adaptation? J. Anim. Ecol. 83, 576–587.

[5] Dupraz, M., Leroy, C., Thórarinsson, T. L., d’Ettorre, P. and McCoy, K. D. (2022) Within and among population differences in cuticular hydrocarbons in the seabird tick Ixodes uriae. bioRxiv, 2022.01.21.477272, ver. 5 peer-reviewed and recommended by Peer Community in Zoology.

Within and among population differences in cuticular hydrocarbons in the seabird tick Ixodes uriaeMarlène Dupraz, Chloe Leroy, Thorkell Lindberg Thórarinsson, Patrizia d’Ettorre, Karen D. McCoy<p>The hydrophobic layer of the arthropod cuticle acts to maintain water balance, but can also serve to transmit chemical signals via cuticular hydrocarbons (CHC), essential mediators of arthropod behavior. CHC signatures typically vary qualitativ...Acari, Biology, Ecology, EvolutionFelix Sperling2022-02-08 13:00:52 View