Submit a preprint

8

Dopamine pathway characterization during the reproductive mode switch in the pea aphiduse asterix (*) to get italics
Gaël Le Trionnaire, Sylvie Hudaverdian, Gautier Richard, Sylvie Tanguy, Florence Gleonnec, Nathalie Prunier-Leterme, Jean-Pierre Gauthier, Denis TaguPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2022
<p>Aphids are major pests of most of the crops worldwide. Such a success is largely explained by the remarkable plasticity of their reproductive mode. They reproduce efficiently by viviparous parthenogenesis during spring and summer generating important damage on crops. At the end of the summer, viviparous parthenogenetic females perceive the photoperiod shortening and transduce this signal to their embryos that change their reproductive fate to produce sexual individuals: oviparous females and males. After mating, those females lay cold-resistant eggs. Earlier studies showed that some transcripts coding for key components of dopamine pathway were regulated between long days and short days conditions suggesting that dopamine might be involved in the transduction of seasonal cues prior to reproductive mode switch. In this study, we aimed at going deeper into the characterization of the expression dynamics of this pathway but also in the analysis of its functional role in this context in the pea aphid Acyrthosiphon pisum. We first analysed the level of expression of ten genes of this pathway in embryos and larval heads of aphids reared under long days (asexual producers) or short days (sexual producers) conditions. We then performed in situ hybridization experiments to localize in embryos the ddc and pale transcripts that are coding for two key enzymes in dopamine synthesis. Finally, Using CRISPR-Cas9 mutagenesis in eggs produced after the mating of sexual individuals, we targeted the ddc gene. We could observe strong melanization defaults in ddc mutated eggs, which confidently mimicked the Drosophila ddc phenotype. Nevertheless, such a lethal phenotype did not allow us to validate the involvement of dopamine as a signaling pathway necessary to trigger the reproductive mode switch in embryos.</p>
https://data.inrae.fr/privateurl.xhtml?token=d41cb434-97c3-400c-9d89-cb7c32299055.You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
Acyrthosiphon pisum, photoperiodic response, dopamine pathway, spatio-temporal expression, CRISPR-Cas9
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Development, Genetics/Genomics, Insecta, Molecular biology
e.g. John Doe john@doe.com
No need for them to be recommenders of PCI Zool. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe john@doe.com
2020-03-13 13:01:44
Mathieu Joron