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Abstract  14 

The hydrophobic layer of the arthropod cuticle acts to maintain water balance, but can also serve to 15 

transmit chemical signals via cuticular hydrocarbons (CHC), essential mediators of insect behavior. 16 

CHC signatures typically vary qualitatively among species, but also quantitatively among populations 17 

within a species, and have been used as taxonomic tools to differentiate species or populations in a 18 

variety of taxa. Most work in this area to date has focused on insects, with little known for other 19 

arthropod classes such as ticks. The worldwide distribution and extensive host-range of the seabird 20 

tick Ixodes uriae make it a good model to study the factors influencing CHC composition. Genetically 21 

differentiated host-races of I. uriae have evolved across the distribution of this species but the 22 

factors promoting sympatric population divergence are still unknown. To test for a potential role of 23 

host-associated CHC in population isolation, we collected I. uriae specimens from two of its seabird 24 

hosts, the Atlantic puffin (Fratercula arctica) and the common guillemot (Uria aalge) in different 25 

colonies in Iceland. Using gas-chromatography and mass-spectrometry, we detected a complex 26 

cuticular mixture of 22 hydrocarbons, including n-alkanes, methyl-alkanes and alkenes ranging from 27 

17 to 33 carbons in length. We found that each population had a distinct CHC profile, with long-28 

chain hydrocarbons tending to be more abundant in puffin tick populations. As profiles also varied 29 

between host-associated groups, future work will now be required to tests whether the different 30 

CHC signals may reinforce assortative mating patterns, and thus I. uriae population divergence. 31 

Keywords: Host race formation; GC-MS; colonial seabirds; Ixodidae; environmental variation  32 
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Introduction 34 

The arthropod cuticle acts as both an exoskeleton and a barrier from the external environment 35 

(Andersen, 1979). The outermost layer, the epicuticle, is covered by a lipid layer (Lockey, 1988) 36 

made-up of esters, carboxylic acids, alcohols, carbonyls and long-chain hydrocarbons (Andersen, 37 

1979) that protects the organism from desiccation (Filshie, 1982). However, cuticular hydrocarbons 38 

(CHC) are also involved in chemical communication serving as sex pheromones, kairomones and/or 39 

signature mixtures allowing recognition of social identity (van Zweden and d’Ettorre, 2010; Wyatt, 40 

2010). Using analytic techniques such as gas chromatography-mass spectrometry (GC-MS) and 41 

MALDI-TOF mass spectrometry, researchers have described hydrocarbons of up 70 carbons in chain 42 

length in insects, principally n-alkanes, methyl-branched alkanes and alkenes (Blomquist and 43 

Bagnères, 2010). The array of CHC on the cuticle constitute a species-specific chemical signature, 44 

varying qualitatively between species and quantitatively within species (Lockey, 1988). CHC patterns 45 

are genetically controlled, but the relative abundance of particular components can be linked to 46 

environmental conditions (Estrada-Peña et al., 1993; Gibbs et al., 1991). CHC patterns have been 47 

used as taxonomic tools to characterize hundreds of arthropod species (Howard and Blomquist, 48 

2005), and to discriminate closely-related populations (Bagnères et al., 1991; Bartelt et al., 1986; 49 

Jallon and David, 1987; Kruger et al., 1991; Simmons et al., 2014).  50 

In ticks, hematophagous arthropods widely distributed across the globe and parasitizing a diverse 51 

array of vertebrate species (McCoy and Boulanger, 2015), little work has been performed to 52 

describe CHC profiles and their variation among species and populations. The only studies to date 53 

have focused on relatively few species and used CHC profiles in an attempt to differentiate closely-54 

related taxa (Estrada-Peña et al., 1992, 1994, 1996; Hunt, 1986; Estrada-Peña and Dusbabek, 1993). 55 

However, CHC profiles in ticks may play essential roles in several aspects of tick life histories. First, 56 
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the tick epicuticle is perforated with numerous channels providing a large surface for exchange with 57 

the external environment. As most tick species spend the major part of their life cycle in the off-58 

host environment, maintaining water balance across this surface under different environmental 59 

conditions will directly dictate survival (Randolph and Storey, 1999); the presence of CHC likely plays 60 

an important role in this. Second, as obligate parasites, access to the vertebrate host for the 61 

bloodmeal is a key aspect of the tick life cycle and, as such, ticks have adapted key traits to locate 62 

and successfully exploit their host (McCoy and Boulanger, 2015). For example, Shimshoni et al. 63 

(2013) found Rhipicephalus tick species had different cuticular fatty acid compositions in relation to 64 

host use. However, whether these differences are linked to adaptive survival or by-product 65 

variation due to the host resource is unknown as yet. Finally, ticks aggregate both on hosts and in 66 

the off-host environment (Randolph, 1998). This behavior is thought to facilitate blood feeding on 67 

the host and increase survival in the off-host environment. It may also enable ticks to find 68 

appropriate mates for reproduction. Some ticks, such as the tropical bont tick Amblyomma 69 

variegatum, produce a multicomponent pheromone to provoke this behavior (Schöni et al., 1984) 70 

but the potential role of these pheromones in assortative mating has never been examined.  71 

Seabird ticks are generally nidicolous, exploiting different local host species that use diverse micro-72 

habitats within the colony (Dietrich et al., 2011). Due to this diversity, these ticks may experience 73 

diverse selective pressures coming from both the hosts and from the temperature and humidity 74 

conditions of the nest micro-habitat. In particular, Ixodes uriae, a tick associated with seabird 75 

colonies in the polar regions of both hemispheres, is known to form host-specific races that show 76 

genetic (McCoy et al., 2001, 2003, 2005) and morphological (Dietrich et al., 2013) differences in 77 

relation to host use. Differential performance on alternative hosts has also been experimentally 78 

demonstrated (Dietrich et al., 2014). Nevertheless, the factors driving divergence within this species 79 
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have yet to be specifically identified. A potential role for isolating mechanisms that lead to 80 

assortative mating based on host use have been suggested (McCoy et al., 2013). 81 

Here, we examine the degree of cuticular hydrocarbon diversity in I. uriae and the factors 82 

influencing these chemical signatures. Based on current knowledge, we predicted that cuticular 83 

hydrocarbon patterns could vary in ticks 1) exploiting different host species and 2) sampled in 84 

different geographic locations. If host exploitation modifies CHC diversity and abundance, we 85 

expected that signatures in ticks from the same seabird host in different locations should be more 86 

similar than signatures in ticks from different host species in the same geographic location. To test 87 

these predictions, we collected I. uriae specimens in the nest material of two seabird host species, 88 

the common guillemot (CG) Uria aalge, and the Atlantic puffin (PF) Fratercula arctica, at three 89 

locations in Iceland. We then extracted cuticular hydrocarbons and analyzed them using gas 90 

chromatography-mass spectrometry (GC-MS). 91 

 92 

Material and methods 93 

Population samples 94 

Flat adult female ticks were collected off-host in three sites in Iceland in June 2016: guillemot ticks 95 

were collected under rocks in the middle of the colony in Langanes (66°22'07.2"N 14°38'33.0"W) 96 

and on Grimsey Island (66°32'57.3"N 17°59'31.1"W); puffin ticks were collected in burrows on 97 

Lundey Island (66°06'53.2"N 17°22'13.1"W) and on Grimsey Island (66°32'39.1"N 18°01'12.9"W) 98 

(Fig.1). Ticks were kept in plastic tubes before hydrocarbon extraction. Four replicates of 10 flat 99 

ticks were extracted for each host species at each site. 100 
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 109 

 110 

Fig.1: Map showing the sampling hosts and locations in Iceland. Acronyme of sampling location are Grimsey: G; Lundey Island: Li; Langanes: L. PF refers to 111 

puffin (Fratercula arctica) and CG to common guillemot (Uria aalge). 112 
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Hydrocarbon extraction 113 

Cuticular compounds were extracted by immersing 10 living flat female ticks in 200 µl of pentane 114 

(HPLC grade, Sigma-Aldrich) in glass vials. The vials were agitated for 1 minute, set down to rest for 115 

5 minutes and then re-agitated for 1 minute. Ticks were then removed from the vials and preserved 116 

in 70% ethanol. The pentane was then evaporated off over 30 minutes and the vials were closed 117 

and kept at 4°C until analyses. A negative control containing only 200 µl of pentane was added to 118 

each extraction session to control for potential contamination. 119 

Chemical analyses 120 

Samples were re-diluted in 40µl of pentane and 3µl were injected into an Agilent Technologies 121 

7890A gas chromatograph (capillary column: Agilent HP-5MS, 30 m × 0.25 mm × 0.25 μm; split–122 

splitless injector; carrying helium gas at 1 mL/min) coupled with an Agilent 5975C mass 123 

spectrometer with 70 eV electron impact ionization. The oven temperature was programmed at 124 

70°C for 1min, and was increased at 30°C/min to 200°C, then to 320°C at 5°C/min and held for 5 125 

min. Compounds were identified on the basis of their mass spectra and retention time and by 126 

comparison with standards and published spectra. The areas under the peaks were extracted using 127 

the Agilent MSD ChemStation software (E.02.01.1177). The relative amount of each hydrocarbon 128 

was calculated using peak area and the mean of the four replicates for each peak was used for the 129 

colony average.  130 

Multivariate analyses 131 

If the relative abundance of a CHC was 0, the value was replaced by 0.00001 which is several times 132 

smaller than the smallest quantity found for a CHC in our dataset. The data were then transformed 133 

by centered log ratio (data available in supplementary material, Table S1 and uploaded on Zenodo 134 
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at https://doi.org/10.5281/zenodo.5889077) and analyzed by Partial Least Squares coupled with a 135 

Discriminant analysis (PLS-DA) using the R software (v 3.4.3) and “RVAidememoire” package (Hervé, 136 

2014) (https://cran.r-project.org/web/packages/RVAideMemoire/index.html). PLS-DA is the key 137 

analysis when the dataset contains less groups than explanatory variables, as in the case of the 138 

present quantitative dataset. PLS-DA is a supervised technique, so class memberships of the CHC 139 

need to be predefined. Here, we only used the eight first axes produced by the PLS to performed 140 

two PLS-DA tests: the first analysis took into account the four population samples as four different 141 

classes (LCG, GCG, LiPF, GPF). The second analysis was based on two classes only, representing the 142 

two host types (PF, CG). The number of significant PLS components was determined by cross model 143 

validation (2CV). We also calculated a numerical value representing the importance of the CHC 144 

variable in the projection (abbreviated VIP), i.e. VIP values larger than 1 are most influential (Hervé, 145 

2014). 146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 
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Results 156 

Hydrocarbon profiles 157 

We detected a complex pattern of 22 hydrocarbons and two non-identified components in the 158 

cuticle of I. uriae ticks. The hydrocarbon mixture was composed of: 14 n-alkanes ranging from 17 to 159 

33 carbon atoms in length, 4 monomethyl-alkanes with 17 to 24 carbon atoms and 4 alkenes with 160 

21 to 27 carbon atoms (Table 1).  161 

Table 1: List of detected cuticular molecules in the cuticle of I. uriae ticks including name and type. 162 

Cuticular component Name Type 

C17 n-heptadecane alkane 

meC17 methylheptadecane methyl-branched alkane 

C18 n-octadecane alkane 

C20 n-eicosane alkane 

C21 :1 heneicosene alkene 

C21 n-heneicosane alkane 

C22 :1 docosene alkene 

C22 n-docosane alkane 

2meC22 2methyldocosane methyl-branched alkane 

C23 n-tricosane alkane 

C24 n-tetracosane alkane 

9meC24 9methyltetracosane methyl-branched alkane 

2meC24 2methyltetracosane methyl-branched alkane 

C25 :1 pentacosene alkene 

C25 n-pentacosane alkane 

C26 n-hexacosane alkane 

C27 :1 heptacosene alkene 

C27 n-heptacosane alkane 

C28 n-octacosane alkane 

C29 n-nonacosane alkane 

C31 n-hentriacontane alkane 

C33 n-tritriacontane alkane 

?1 Non-identified - 

?2 Non-identified - 

 163 

All hydrocarbons were shared by the four tick populations, except 2meC24 (2methyltetracosane) 164 

and C33 (n-triacontane) which were only found in puffin ticks (Fig.2). 165 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.21.477272doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477272
Anonymous
Inserted Text
Good place to add the supplier of the various standards



10 
 

166 
Fig.2: Detected cuticular hydrocarbons from I. uriae ticks ranged from 17 to 33 carbon atoms in length. The mean abundance was calculated based on values 167 

of each of the four replicate tick pools. Error bars represent standard deviations. See Table 1 for population abbreviations. 168 
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A high degree of variation in mean abundance of cuticular components among samples was obvious 169 

(Fig.2). Hydrocarbons C22:1 (docosene), C29 (n-nonacosane) and C31 (n-hentriacontane) were the 170 

most predominant, whereas many hydrocarbons were detected in low quantity, as for example C20 171 

(n-eicosane), 2meC22 (2methyldocosane) and C26 (n-hexacosane).  172 

The abundance pattern of cuticular hydrocarbons varied between ticks of the two host species 173 

(Fig.3), but also among the same host in different colony sites. Nevertheless, results of the pairwise 174 

comparisons were non-significant (p>0.2). No CHC was specific to CG samples, although C17 (n-175 

heptadecane) and C22:1 (docosene) were highly abundant in the GRI colony (Fig.2 and 3). In contrast, 176 

long chain cuticular hydrocarbons tended to be present in both PF samples: C27 (n-heptacosane), C29 177 

(n-nonacosane) and C31 (n-hentriacontane). CHC components tended to be in lower overall 178 

abundance in samples from Langanes (L CG), whereas samples from Lundey Island (LI PF) had the 179 

highest overall abundance (Fig. 2). 180 
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 181 

Fig.3: Gas-chromatograms showing the comparison of cuticular hydrocarbon profiles for pools of 10 female ticks from Atlantic puffins (PF: black line) and 182 

Common guillemots (CG: orange line) on Grimsey Island, Iceland. 183 
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PLS-DA analyses 184 

Population samples 185 

Cross model validation for population showed that the quality of the analysis was good: 50.6% of 186 

the samples were assigned to the population of origin. PLS-DA analysis showed a discriminating 187 

population effect (p=0.008) separating the two host species on first axis (Fig.4). The three first axes 188 

explained respectively 11.94, 7.99 and 3.99 % of the total variance among samples.  189 

 190 

Fig.4: Graphical representation of the four population samples on the two first axes of the PLS-DA analysis. 191 

The first and second axes explained respectively 11.94 and 7.99% of the total variance among samples 192 

(p=0.008). 193 

C33 (n-tritriacontane), 2meC24 (2methyltetracosane) and C29 (n-nonacosane) appeared as the most 194 

influential components separating the four population samples (Fig.5). 195 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.21.477272doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477272


14 
 

 196 

Fig.5: VIP classification showing the influence of CH in the discrimination of the four population samples. VIP 197 

values larger than 1 (bar goes beyond the dashed red line) are most influential. 198 

Host types 199 

The cross-validation test for host type revealed that 75% of the tick pools were assigned to the host 200 

of origin (PF, CG). The PLS-DA analysis revealed no significant difference in CHC profiles between the 201 

host types, although a tendency was found (PLS-DA: p=0.064). 202 

 203 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.21.477272doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.477272
Anonymous
Cross-Out

Anonymous
Inserted Text
What are I1 and I2 in this figure?  are these the unidentified compounds from Table 1?

Anonymous
Sticky Note
Same question regarding why is there and X in front of the 2meC24 and 9meC24?



15 
 

Discussion 204 

Cuticle composition and function 205 

Hydrocarbons on the arthropod cuticle help prevent desiccation, but may also be involved in 206 

chemical communication, constituting essential mediators of insect behavior (Blomquist and 207 

Bagnères, 2010). Using GC-MS techniques to analyze extracts from female I. uriae ticks, we detected 208 

a complex mixture of cuticular hydrocarbons containing linear and monomethyl-alkanes and 209 

alkenes from C17 to C33. The qualitative composition is similar to that reported for many other 210 

arthropods, containing predominantly linear alkanes (C23, C25, C27, C29 and C31) (Howard and 211 

Blomquist, 2005; Lockey, 1988). A majority of the detected cuticular hydrocarbons were already 212 

reported in other hard ticks: I. persulcatus (Tkachev et al., 2000), Amblyomma variegatum (Estrada-213 

Peña et al., 1994b) and Rhipicephalus spp. (Estrada-Peña et al., 1992a). Nevertheless, alkenes were 214 

only detected once in low quantities in Rhipicephalus spp. (Estrada-Peña et al., 1992a). Here, we 215 

report the presence of alkenes as heneicosene, pentacosene, heptacosene and a high quantity of 216 

docosene, particularly in one of the CG samples. Alkenes were demonstrated to act as sex 217 

pheromones in the Alfalfa leaf-cutter bee Megachile rotundata and the rove beetle Aleochara 218 

curtula (Paulmier et al., 1999; Peschke and Metzler, 1987). Heneicosene is also described as an 219 

aggregation pheromone in drosophila species (Bartelt et al., 1988; Bartelt and Jackson, 1984). 220 

Pentacosene is implicated in the mating process of different fly species as stimulant pheromones 221 

(Uebel et al., 1978). The presence of these alkenes in I. uriae likely corresponds to the biological 222 

state of the female ticks when they were collected, as it was during the active reproduction season. 223 

This suggests a possible role for these molecules in tick reproduction. 224 

We found also large amount of long-chain hydrocarbons in PF samples (n-nonacosane C29, n-225 

hentriacontane C31 and n-tritriacontane C33). Mixed with other compounds, n-tritriacontane was 226 
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demonstrated to induce copulation in males of the stable fly Stomoxys calcitrans (Uebel et al., 227 

1975). Other long chain hydrocarbons, including C23 to C31, produced in large quantities and acting 228 

in combination, were found to serve in colony recognition by bumblebees Bombus terrestris (Rottler 229 

et al., 2013). Moreover, 2MeC24, only detected in one PF CHC profile, has been shown to serve as 230 

contact pheromone in peach twig borers Anarsia lineatella (Schlamp, 2005). As puffin burrows are 231 

deep, densely distributed and interconnected (Harris and Wanless, 2011), the large production of 232 

these cuticular hydrocarbons in I. uriae may enable ticks to find their way in the host nesting 233 

environment. The use of this particular blend of CHC may also help ticks to find individuals that 234 

smell similar, favoring assortative mating (van Zweden and d’Ettorre, 2010). This type of pheromone 235 

may not be necessary for CG ticks because guillemots breed in extremely dense numbers on cliff 236 

ledges with no constructed nest; ticks tend to aggregate under and around rocks on the cliff ledge 237 

such that finding a mate from the same host type may be easier than in the case of puffin hosts. 238 

The presence of complex compounds in the CHC pattern of I. uriae highlight that chemical 239 

communication may be important in this tick species, enabling host-adapted ticks to find a suitable 240 

host and a mating partner (Sonenshine and Roe, 2014). 241 

Site or host-associated patterns? 242 

As expected, chemical analyses revealed that each tick population had a distinct CHC profile, but 243 

that specific CHCs were also associated with different host types. In particular, C33, 2MeC24 and C29 244 

were most frequently or exclusively detected in PF populations. The quantitative variability among 245 

detected hydrocarbons could be related to different factors. First, aging and development have 246 

been demonstrated to impact cuticular hydrocarbon patterns in different taxa (Desena et al., 1999; 247 

Ichinose and Lenoir, 2009). For example, aging favors the production of longer hydrocarbon chains 248 

and decreased attractiveness in Drosophila melanogaster (Kuo et al., 2012). The high quantities of 249 
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long-chain hydrocarbons (C27, C29, C31), particularly observed in the PF samples, could be a 250 

consequence of tick age variability between samples. Samples used in the present study were 251 

collected in the field and the relative age of the specimens could not be determined. However, as 252 

tick activity is synchronous with seabird breeding, we did not expect the overall timing in the adult 253 

female activity to differ in a systematic way between ticks exploiting the different host species, nor 254 

among distinct colony locations within Iceland.  255 

Second, climatic conditions can also shape CHC composition. Differences in cuticular hydrocarbon 256 

composition were observed in geographically distant tick populations of Amblyomma variegatum 257 

(Estrada-Peña et al., 1994) and some extreme climatic parameters were shown to be correlated 258 

with methyled-alkanes in Rhipicephalus sanguineus, highlighting that variation of these compounds 259 

is potentially linked to adaptation to environmental temperatures (Estrada-Peña, 1993). The off-260 

host environment (rock or burrow) of I. uriae may display significant variation in terms of 261 

temperature and relative humidity due to differential exposure to climatic factors such as sun, rain 262 

and/or snow (Buckley and Buckley, 1980). These selective factors can impact tick survival and could 263 

lead to the quantitative variation in the cuticular components observed in this study. Howard et al 264 

(1978) argued that the effectiveness of CHC in prevention of desiccation is dependent on the 265 

quantity of CHC and that saturated CHCs are important components to protect against water loss. 266 

This hypothesis does not seem to explain the pattern of long chain CHC we observed in PF samples; 267 

the micro-habitat used by PF ticks, i.e. deep burrows, is expected to be more stable in terms of 268 

temperature and humidity than more exposed areas used by CG ticks.  269 

Third, although the production of CHC is genetically controlled, studies have revealed the 270 

importance of the environment in the acquisition of new hydrocarbons (D’ettorre et al., 2006; 271 

D’Ettorre et al., 2002). Indeed, Singer and Espelie (1996) showed that the social wasp Polistes 272 
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metricus Say (1831) is only recognized as a nest mate by siblings if exposed to nest surface 273 

hydrocarbons after hatching. Likewise, in the leaf-cutting ant Acromyrmex octospinosus, it was 274 

demonstrated that individuals foraging on different host plants are aggressive towards each other 275 

(Jutsum et al., 1979). The authors proposed that the mediation of inter-colony interactions have 276 

evolved by the acquisition of colony-specific odor components. The I. uriae specimens used in the 277 

present study were collected under rocks in the middle of the guillemot colony or within individual 278 

puffin burrows. Living in these different substrates could lead to differences in cuticle composition 279 

based on environmental acquisition.  280 

Fourth, diet also appears to be an important factor shaping the cuticular hydrocarbon profile. In the 281 

Argentine ant Linepithema humile, colonies eating different prey items present particular 282 

hydrocarbon profiles that include components coming from the prey (Liang and Silverman, 2000). In 283 

the same way, Geiselhardt et al. (2012) showed that males of the phytophagous mustard leaf beetle 284 

Phaedon cochleariae preferred to mate with females reared on the same host plant compared to 285 

females from a different host plant, even though they originated from the same laboratory stock 286 

population. This phenomenon appears to be due to divergent, host-specific cuticular hydrocarbon 287 

profiles. In ticks, it was demonstrated that the cuticular fatty acid profiles of Rhipicephalus spp. 288 

presented significant differences in fatty acid abundance according to host use (Shimshoni et al., 289 

2013). Here, the blood composition of the two different hosts of I. uriae could result in the 290 

acquisition of specific hydrocarbon mixtures.  291 

In general, making inferences on environmental versus host effects will require the examination of 292 

ticks from additional sites and host types. However, regardless of the origin of host-associated 293 

differences in CHC profiles of I. uriae, what is important to now determine is whether these 294 

differences reinforce assortative mating patterns, favouring the divergence of sympatric 295 
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populations and the rapid formation of host races. Future analyses should focus on the 296 

characterization and isolation of the main components of the cuticular mixture from ticks of each 297 

seabird host type to test for their biological activity and potential role in tick behavior.  298 

 299 
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Supplementary data  317 

Table S1: Relative abundance of the CHC extracts of each population replicate’s after log centered 318 

ratio transformation (also available on Zenodo at https://doi.org/10.5281/zenodo.5889077). 319 

 320 

       

 C17 meC17 C18 C20 C21.1 C21 

CHC_GPF1 1,258262 -1,675478 -1,225611 -1,358771 -0,456587 -1,093444 

CHC_GPF2 -0,983004 -0,983004 -0,783199 -1,164937 -1,056892 -0,184697 

CHC_GPF3 4,151361 3,580785 4,724183 4,617548 3,807260 3,540713 

CHC_GPF4 3,597384 3,540178 2,810370 -5,405227 2,969631 3,222111 

CHC_LIPF1 1,518413 -6,017122 1,043470 -1,007387 0,183513 -1,120153 

CHC_LIPF2 0,687396 -0,588309 -0,053014 -0,504584 0,166784 -1,747215 

CHC_LIPF3 2,953938 1,854215 2,570707 -4,252033 -4,252033 2,319610 

CHC_LIPF4 3,334867 2,899295 1,532183 2,736876 -4,685930 2,599998 

CHC_GCG1 4,385533 1,306893 1,157818 0,389237 1,944246 0,212800 

CHC_GCG2 1,730616 1,703967 1,991403 1,042497 2,791342 0,217889 

CHC_GCG3 5,149559 5,171603 4,695299 -4,141914 -4,141914 -4,141914 

CHC_GCG4 6,607656 6,507890 -2,764376 -2,764376 -2,764376 6,667177 

CHC_LCG1 4,213065 2,588977 1,956074 2,221551 -5,462891 1,390069 

CHC_LCG2 1,933896 1,561455 1,352674 1,168282 2,599910 1,493046 

CHC_LCG3 5,173815 -3,295400 -3,295400 -3,295400 -3,295400 5,004318 

CHC_LCG4 -2,395630 -2,395630 -2,395630 -2,395630 -2,395630 6,592884 

       

       

       

 C22.1 C22 meC22 C23 C24 X9meC24 

CHC_GPF1 1,50623611 -0,50555381 -1,70555949 0,12096462 -0,42768644 -1,2206834 

CHC_GPF2 1,18425441 -0,49071836 -0,98066082 0,94030298 -0,28189781 -1,02914483 

CHC_GPF3 4,32918786 4,60171239 4,02667532 -4,77602802 -4,77602802 -4,77602802 

CHC_GPF4 2,85991037 2,24131129 3,95590755 3,57761114 -5,4052267 2,55126443 

CHC_LIPF1 2,6847376 0,88062159 -6,01712163 0,22189045 0,56501804 -0,13693536 

CHC_LIPF2 2,96343585 0,37650416 -5,92683159 0,07138213 0,62140857 -0,18069582 

CHC_LIPF3 -4,25203345 -4,25203345 -4,25203345 2,48114139 2,91217821 -4,25203345 

CHC_LIPF4 -4,68592953 2,30293014 -4,68592953 2,17284599 2,95775455 -4,68592953 

CHC_GCG1 4,72183226 2,16796305 -5,97456355 0,50141786 1,61476737 1,69619514 

CHC_GCG2 4,63765818 1,96470376 -6,27678757 0,9386865 1,89458577 1,80575829 

CHC_GCG3 -4,14191373 -4,14191373 4,50899999 4,55481651 5,23921344 4,3019409 

CHC_GCG4 -2,76437623 -2,76437623 -2,76437623 6,56677188 -2,76437623 -2,76437623 
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CHC_LCG1 5,14840786 2,88187094 -5,46289066 2,15974193 2,64600173 1,30457536 

CHC_LCG2 5,19919581 2,44288367 -5,83634374 0,96429749 1,55031557 1,00827119 

CHC_LCG3 -3,2954001 -3,2954001 -3,2954001 4,10398495 5,06658076 -3,2954001 

CHC_LCG4 -2,39563008 -2,39563008 -2,39563008 6,38876341 -2,39563008 -2,39563008 

       

       

       

 X2meC24 C25.1 C25 I1 C26 I2 

CHC_GPF1 -1,49255919 0,710483 1,09996476 0,56276083 -0,17627985 0,07387322 

CHC_GPF2 -0,85129625 0,41550683 1,72274199 0,15326967 -0,25663413 -0,00255114 

CHC_GPF3 3,04100103 -4,77602802 -4,77602802 3,46602618 3,89103385 -4,77602802 

CHC_GPF4 2,74237448 -5,4052267 4,27702093 3,00740146 -5,4052267 3,29174679 

CHC_LIPF1 -6,01712163 -0,1488945 1,29293382 1,12637653 0,69030705 -6,01712163 

CHC_LIPF2 -5,92683159 -0,64688596 1,31627079 0,90987066 0,41085836 -5,92683159 

CHC_LIPF3 -4,25203345 -4,25203345 4,71776728 3,3029661 2,56104558 -4,25203345 

CHC_LIPF4 -4,68592953 -4,68592953 4,6771672 -4,68592953 2,68595365 -4,68592953 

CHC_GCG1 -5,97456355 -0,42396916 1,22349549 1,72540467 1,38243536 -1,39612756 

CHC_GCG2 -6,27678757 -0,2065063 1,72213495 1,06728457 1,33585569 -0,21747187 

CHC_GCG3 -4,14191373 -4,14191373 5,71433159 -4,14191373 4,75085336 -4,14191373 

CHC_GCG4 -2,76437623 -2,76437623 7,51121475 7,01077959 -2,76437623 -2,76437623 

CHC_LCG1 -5,46289066 -5,46289066 3,01341895 2,82230157 2,69452068 -5,46289066 

CHC_LCG2 -5,83634374 2,0586822 1,72477962 2,25712355 1,39064679 -5,83634374 

CHC_LCG3 -3,2954001 -3,2954001 7,60591058 5,62063417 5,2526945 -3,2954001 

CHC_LCG4 -2,39563008 -2,39563008 7,96176069 -2,39563008 7,19765085 -2,39563008 

       

       

       

 C27.1 C27 C28 C29 C31 C33 

CHC_GPF1 -0,00016215 1,30711449 0,33827026 2,04171998 1,59307887 0,72564782 

CHC_GPF2 -0,19069859 1,69885837 -0,1473274 1,99452145 1,07445349 0,20275287 

CHC_GPF3 -4,77602802 -4,77602802 4,75882151 -4,77602802 -4,77602802 -4,77602802 

CHC_GPF4 4,00281861 -5,4052267 -5,4052267 -5,4052267 -5,4052267 -5,4052267 

CHC_LIPF1 1,02468304 2,57346606 1,2522136 4,63157554 4,23145935 2,56117937 

CHC_LIPF2 -1,29244538 2,91653471 0,74631061 4,80493688 4,29222175 2,5097294 

CHC_LIPF3 4,42572948 -4,25203345 -4,25203345 6,29373406 6,22187233 4,15746354 

CHC_LIPF4 3,97386234 -4,68592953 -4,68592953 5,79395404 5,57504998 3,61655868 

CHC_GCG1 -2,31093524 1,17815423 0,96870906 1,45238521 -5,97456355 -5,97456355 

CHC_GCG2 -2,63802842 1,37672655 1,18012447 0,76792459 -6,27678757 -6,27678757 

CHC_GCG3 4,78876251 -4,14191373 -4,14191373 -4,14191373 4,9694991 -4,14191373 

CHC_GCG4 6,12290594 -2,76437623 -2,76437623 -2,76437623 -2,76437623 -2,76437623 

CHC_LCG1 -5,46289066 3,03426816 2,96262862 2,66565265 -5,46289066 -5,46289066 

CHC_LCG2 -5,83634374 1,89920237 2,48119674 1,9322039 -5,83634374 -5,83634374 

CHC_LCG3 6,05677419 -3,2954001 -3,2954001 -3,2954001 5,54628953 -3,2954001 

CHC_LCG4 7,47336812 -2,39563008 -2,39563008 -2,39563008 7,50691468 -2,39563008 
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