1	Title: Negative impact of mild arid conditions in natural rodent populations revealed using
2	markers of physiological condition in natura

- 3 Negative impact of mild arid conditions on a rodent revealed using a physiological
- 4 approach in natura
- 5 Authors : Hamilcar Keilani^{1*}, Nico Avenant², Pierre Caminade¹, Neville Pillay³, Guila
- 6 Ganem^{1,3}
- 7 1. ISEM, Univ Montpellier, CNRS, IRD, Montpellier, Occitanie, France
- 8 2. Department of Mammalogy, National Museum and Centre for Environmental
- 9 Management, University of the Free State, Bloemfontein, Free State, South Africa
- 10 3. School of Animal, Plant and Environmental Science, University of the
- 11 Witwatersrand, Wits, Gauteng, South Africa
- 12 * Corresponding author; e-mail : <u>hamilcar.keilani@umontpellier.fr</u>,
- 13 <u>hamilcarkeilani98@gmail.com</u>
- 14
- 15 Open research statement
- 16 Data will be available from the Dryad repository (TBA)
- 17 Keywords
- 18 Aridity, blood metabolites, ecophysiology, liver, local adaptation, nutrition, *Rhabdomys*
- 19 dilectus dilectus, Rhabdomys bechuanae
- 20

21 Abstract

22	1. Understanding how organisms respond to seasonal variations in their
23	environment can be a window to their potential adaptability, a classical problem in
24	evolutionary ecology. In the context of climate change, inducing increased aridity and
25	disruption of seasonality, it is crucial to study the extent and limits of species
26	responsiveness. it is erucial to identify the potential for species responses.
27	
28	2. Here, the physiological response to food and water shortage during seasonally
29	dry conditions were investigated. We studied populations of two rodent species of the
30	genus Rhabdomys, one arid and one mesic, in a semi-arid zone where their range overlap
31	in South Africa. We measured <u>blood concentrations of markers of kidney and liver</u>
32	function, as well as body condition, blood concentrations of physiologically relevant
33	metabolites at the onset and the end of the dry season.
34	3. We found similar shifts in blood metabolite levels in the semi-arid populations of
35	the two species, indicating malnutrition consistent with the observed degradation of
36	habitat quality between the start and the end of the dry season. Furthermore, regardless
37	of the period, differences between the two species in blood metabolite concentrations (ex:
38	amylase, sodium, alkaline phosphatase) were observed, suggesting contrasting diets and
38 39	amylase, sodium, alkaline phosphatase) were observed, suggesting contrasting diets and water conservation abilities.
39	water conservation abilities.
39 40	water conservation abilities.Overall, we show that, as seasonal dry conditions worsen, organisms are

44 impact and questions resilience of animals to harsher arid conditions.

45 Introduction

46

47 Organisms are constantly exposed to a wide range of environmental variations, including 48 short-term changes during their lifetime and longer-term changes across generations (Lopez-49 Maury et al., 2008). In the coming decades, extreme and more frequent droughts are predicted 50 by most projections, resulting from changes in precipitation patterns, increased temperature, 51 and evaporation (Naumann et al., 2018). These changes will induce great challenges to 52 organisms. Under such circumstances, divergent selection can lead to the evolution of local 53 adaptations where, in a given environment, resident phenotypes outperform nonresident ones 54 (Kawecki & Ebert, 2004). 55 As a result of climate change, organisms can be faced with warmer and drier environmental conditions (Parmesan et al., 2000), likely to impact their capacity to maintain homeostasis 56 57 (i.e. the state of steady internal conditions allowing optimal body functioning) (Davies, 2016; 58 Fuller et al., 2016). In dry environments, food and water can be scarce, generating strong 59 selection on physiological attributes maximizing energy and water availability for body 60 function. Habitat generalists and specialists' taxa may respond differently to environmental changes. Desert specialists exhibit specific physiological and/or behavioral traits, resulting 61 62 from genetic adaptations to the environment, allowing them to continuously endure or evade 63 periods of resource restriction (Rocha et al., 2021). In contrast, generalist species may seek to 64 escape the effects of aridity through temporary avoidance (Abraham et al., 2019) or plastic 65 adjustments during unfavorable seasons (Kobbe et al., 2011). Compared to mesic species, arid 66 species have lower basal metabolic rates and evaporative water loss (Muñoz-Garcia et al., 2022), adopt a more flexible diet (Tshikae et al., 2013), and cope better with prolonged 67

68 droughts (Boyers et al., 2021).

70	Local ecological adaptation can be described in several different and complementary ways,
71	such as through its genetic basis, transcriptomic, behavioral, or physiological aspects.
72	Adaptive evolution <i>sensu stricto</i> occurs when the genetic constitution of a population changes
73	because of natural selection (Merilä & Hendry, 2013). In contrast, local adaptation sensu lato,
74	also considers concepts such as phenotypic plasticity (the ability of a genotype to produce
75	distinct phenotypes when exposed to different environments throughout its ontogeny;
76	Pigliucci, 2005). It is usually assessed using comparative population or species fitness
77	estimates under novel environmental conditions (Webster & Reusch, 2017). The response to
78	local environmental conditions is a major factor in the generation and maintenance of
79	biodiversity, impacting population dynamics, biogeographical ranges, and species interactions
80	(Blanquart et al., 2013; Post et al., 2009). Specifically, physiological limits can drive and be
81	driven by evolution, shape species distributions <u>and niches</u> , and define species response
82	capacities to future climate change, directly impacting risks of extinction (Somero, 2012). For
83	example, latitudinal niches are associated with adaptive variation in lethal temperature
84	(LT50)thermal limits has been established in marine invertebrates inhabiting different
85	latitudinal niches (Somero, 2010).
86	Studies of different physiological systems, such as the cardiovascular (Seebacher et al., 2005,
87	Berkel & Cacan, 2022) or digestive systems (Naya et al., 2011), in response to different
88	abiotic conditions, can improve our understanding of the causal mechanisms of responses of
89	organisms to climate variation (Seebacher & Franklin, 2012). Biotic factors, such as sex, age,
90	diet, strain, or breeding status also influence individual responses (McClure, 1999). With a
91	focus on influence of air temperature, water availability and energy resources on an

92 organism's physiological state, research in physiological ecology has addressed how variation

93 in physiology evolves and is maintained in relation to environmental conditions (Feder &94 Block, 1991).

95	As a result of climate change, organisms can be faced with warmer and drier environmental
96	conditions (Parmesan et al., 2000), likely to impact their capacity to maintain homeostasis
97	(Fuller et al., 2016). In dry environments, food and water can be searce, generating strong
98	selection on physiological attributes maximizing energy and water availability. Habitat
99	generalist and specialist taxa may respond differently to environmental changes. Desert
100	specialists exhibit specific physiological and/or behavioral traits, resulting from genetic
101	adaptations to the environment, allowing them to continuously endure or evade periods of
102	resource restriction (Rocha et al., 2021). In contrast, generalist species may seek to escape the
103	effects of aridity through temporary avoidance (Abraham et al., 2019) or plastic adjustments
104	during unfavorable seasons (Kobbe et al., 2011). Compared to mesic species, arid species
105	have lower basal metabolic rates and evaporative water loss (Muñoz-Garcia et al., 2022),
106	adopt a more flexible diet (Tshikae et al., 2013), and cope better with prolonged droughts
107	(Boyers et al., 2021).

| 108 Analysis of blood metabolites has successfully been used to investigate kidney and liver 109 physiology of wild populations (e.g. Al-Eissa et al., 2012). The kidney and the liver both 110 contribute to homeostasis in periods of food and water scarcity; indeed, the kidney plays a crucial role in maintaining osmotic balance and the liver is involved in dietary metabolism. 111 112 Water loss can also mechanically induce high concentrations of some blood markers and impact organism's capacity to evacuate products of metabolic waste, such as urea, from the 113 blood (Ostrowski et al., 2006). Hence, dry conditions can put a strain on these organs and be 114 115 detrimental to survival and reproduction.

116	In the Succulent Karoo of South Africa, where the average daily precipitation during the dry
117	season is 0.26 mm versus 0.78 mm during the wet season, the probability of survival of adult
118	R. pumilio, a thirdanother species of the same genus, were related to their physiological
119	response at the start of the dry season (Schoepf et al., 2017a). Schoepf and collaborators
120	found higher serum concentrations of albumin, glucose, potassium, and lower concentrations
121	of globulin, in animals that survived compared to those that did not survive the dry season. At
122	the peak of the dry season, individuals had lower concentrations of glucose and phosphorus
123	and higher concentrations in globulin and urea nitrogen if they survived the dry season. These
124	results strongly suggest that such markers could be good indicators of individual fitness.
125	The two study species, R.bechuanae and R.dilectus dilectus, have different environmental
126	niches (du Toit et al. 2012, Meynard et al. 2012). Throughout most of its distribution,
127	R.d.dilectus occurs in mesic habitats with vegetation cover and nests in dense grass, while
128	R.bechuanae is found in semi-arid and arid habitats, thriving predominantly in sparsely
129	vegetated areas and nesting in bushes (Dufour et al., 2015; Dufour et al., 2019). Moreover,
130	differences in morphology or and behavior suggest adaptation to dry conditions in
131	<u>R.bechuanae</u> (Ganem et al., 2020; Dufour et al., 2019).
132	In our study, potential impact of increased aridity was addressed by investigating the
133	physiological consequences of seasonal variation in dry conditions, in two species of the
134	diurnal African striped mouse genus Rhabdomys. The two study species, R. bechuanae and
135	R. dilectus dilectus, have different environmental niches (du Toit et al. 2012, Meynard et al.
136	2012). Throughout most of its distribution, R.d.dilectus occurs in mesic habitats with
137	vegetation cover and nests in dense grass, while R. bechuanae is found in semi arid and arid
138	habitats, thriving predominantly in sparsely vegetated areas and nesting in bushes (Dufour et
139	al., 2015; Dufour et al., 2019). Moreover, differences in morphology or behavior suggest
140	adaptation to dry conditions in <i>R.bechuanae</i> (Ganem et al., 2020; Dufour et al., 2019). Here

141	we address both physiological responses to seasonal dry conditions and divergence in
142	populations of the two species in the same bioclimatic region.
143	Indeed, at the edge of their distributions in central South Africa, the two species inhabit a
144	semi-arid region within which they occur either as parapatric or sympatric populations. This
145	semi-arid zone, the expansion and contraction of which depends on land use and precipitation
146	(Lian et al., 2021), has experienced a recent trend towards desiccation (Jury, 2021). Such
147	drying conditions could generate additional selective pressures to those already
148	experiencedgenerate selective pressures, additional to those already experienced by the semi-
149	arid populations of the two species. Short-term climatic patterns can also impact resource
150	availability in this regionIndeed, during La Niña years (like during th is is study), dDuringas
151	part of the El Niño Southern Oscillation phenomenon, during La Niña years (like during this
152	study), there is a general association between regional wetness and sea surface temperatures
153	in the neighbouring Atlantic and Indian Oceans, leading to wetter episodes throughout
154	Southern Africa during La Niña years (Nicholson & Selato, 2000).
155	
156	In the Succulent Karoo of South Africa, where the average daily precipitation during the dry
157	season is 0.26 mm versus 0.78 mm during the wet season, the probability of survival of adult
158	R. pumilio were related to their physiological response at the start of the dry season (Schoepf
159	et al., 2017a). Schoepf and collaborators found higher serum concentrations of albumin,
160	glucose, potassium, and lower concentrations of globulin, in animals that survived compared
161	to those that did not survive the dry season. At the peak of the dry season, R.pumilio had
162	lower concentrations of glucose and phosphorus and higher concentrations in globulin and
163	urea nitrogen if they survived the dry season. These results strongly suggest that such markers
164	could be good indicators of individual fitness.

165	While many studies have harnessed physiology, genomics, and transcriptomics to highlight
166	potential adaptive interspecific or interpopulational contrasts, studies under common natural
167	environmental conditions are lacking (Rocha et al., 2021). These approaches provide a mean
168	to disentangle the roles of interpopulational or interspecific variation from extrinsic
169	environmental factors in shaping phenotypic variation, taking advantage of the natural
170	conditions experienced in the field, including their complexity, with little human involvement.
171	This study took place in a natural semi-arid environment and asked how seasonal variation in
172	dry conditions influenced the physiological responses of <i>R.bechuanae</i> and <i>R.d.dilectus</i> of the
173	two species. We compared body condition, blood concentrations of markers of kidney and
174	liver functions and habitat characteristics of parapatric populations of the two species of
175	<i>R.bechuanae</i> and <i>R.d.dilectus</i> at the start <i>versus</i> the end of the dry season. First, we expected
176	that the habitat available for the mice would be drier at the end compared to the onset of the
177	dry season, inducing a reduction of food and water, impairing liver and kidney function, and
178	impacting body condition. Second, assuming local adaptive plasticity, we hypothesized that
179	both species would be able to adjust their physiological responses to seasonal changes in dry
180	conditions. Third, we expected <u>that <i>R.bechuanae</i></u> , having evolved in arid environments, would
181	perform better in semi-arid conditions and be closer to the expected local optimal response to
182	increased dry conditions than <i>R.d.dilectus</i> (having evolved in mesic areas), as found for <i>Mus</i>
183	musculus (Bittner et al., 2021). Alternatively, if both species evolved specific adaptations to
184	their semi-arid environment, we expected no species differences (Table 1).

185

186 Materials and Methods

187 <u>Ethics statement</u>

- 188 Permits to sample and handle animals in the field were obtained from the DESTEA of the
- 189 Free State, the North West DEDECT and Northern Cape DENC (respectively,
- 190 n°202110000007994, NW 38956/04/2022, FAUNA 0389/2022). Animal handling was
- 191 performed under ethical clearance from the Languedoc-Roussillon ethical committee for
- animal experimentation (n°2022041512256467 v5).

193 *Choice of sampling periods and sites*

- 194 We selected six study sites based on their geographical position and their aridity index (AI).
- 195 The AI calculation was based on Thornthwaite method (Thornthwaite, 1948; see
- **Supplementary Material** for full formula) using rainfall and temperature data collected from
- 197 2010-2021 (South African Weather Service).
- 198
- We selected parapatric populations of the two species in a semi-arid region of South Africa 199 (0.2 < AI < 0.5). In this region, a hot and wet season occurs from roughly December to 200 201 February, and a cool dry season from May to September. We sampled six sites at the onset 202 (May 2022) of the dry season: Barberspan Bird Sanctuary, Benfontein Nature Reserve, 203 Bloemhof Dam Nature Reserve, Gariep Dam Nature Reserve, Kalkfontein Dam Nature 204 Reserve and Wolwespruit Nature Reserve (Figures 1_&3, Table 2). We then resampled four 205 of these sites at the end of the dry season (September 2022). Two sites (Barberspan and 206 Benfontein) were excluded from the September sampling due to extreme weather conditions.

207 Capture and field protocol

We used small mammal PVC traps (LxHxW= 29.6x7.5x7.5 cm), baited with a mixture of oats,
peanut butter, salt and sunflower seeds, and added a piece of cotton wool. They were placed
approximately every 15 m along roughly 150 to 300 m transects.
<u>Transects varied in each site with habitat and terrain conditions. Overall, trapping effort was</u>

212	<u>9688 trap nights (details in Supplementary Tables 1&2).</u> Since <i>Rhabdomys</i> is mostly diurnal,
213	the traps were checked twice a day (8 AM and 3 PM). On the field, all trapped striped mice
214	were measured (body length and mass), their sex and breeding status (breeding or non-breeding)
215	sassessed based on external morphological metrics-features (individuals considered as breeders
216	havepresented either: signs of lactation, a perforated vagina, presence of a vaginal plug, or
217	scrotal testis), and a 0.5 mm piece of tail was collected and kept in 98 % ethanol for species
218	identification. All striped mice were marked with a unique ear-tag before their release at the
219	trapping location unless they were kept for the physiological study (i.e. kept in their trap with
220	cotton <u>wool</u> and food).
221	Out of 903 trapped small mammals, 694 were Rhabdomys. For the physiological study, we
222	selected <u>only</u> adults, avoiding related individuals as much as possible, by selecting mice
223	trapped at least 100 m apart, except for breeding pairs (a male and a female) that could be

trapped in the same nest. This distance was based on data obtained for *R. pumilio* indicating

225 minimal relatedness (R=0 between males and R=0.06 between females) at this distance

(Solmsen et al. 2012). <u>In each site, t</u> Frapping lasted 3 to 6 days-per site, until we reached our
 target of 20 adult individuals.

228 <u>Habitat</u>

229 Vegetation composition

Earlier studies have shown inter-species differences in vegetation cover and structure
requirements (Dufour et al., 2015). Since habitat characteristics can vary locally, we
characterized the vegetation structure (i.e. grass *versus* woody vegetation) at a microhabitat
scale (around the trap), and at a mouse home-range scale (Dufour et al., 2015). Around traps
in which a *Rhabdomys* was trapped, the percentage of the surface composed of dry grass,
green grass, dry bushes, green bushes, succulent plants, holes and uncovered surfaces was

236	measured assessed within 2mx2m (4m ²) and the general vegetation within vegetation within
237	10x10m (100m ²) quadrats centered on the trap position. For each 4m ² quadrat we considered
238	recorded in detail the percentage and type of cover at the flourground level within each of
239	four $1x1m$ subunits assessed (using a $\frac{1x1m}{1x1m}$ metal frame); the results obtained for the four
240	subunits were then averaged. For the Each-100m ² quadrats was assessed following a visual
241	inspection of a 100m ² zone around each trapthe assessment was made following a visual
242	inspection at eye-level height; less detailed but still the percentage of the different type of
243	cover percentagess wereas estimated by the same observer. We All together we characterized
244	236 quadrats of each type (100m ² and 4m ²).
245	Normalised Differential Vegetation Index
246	NDVI, the satellite imagery-based index informative of ground vegetation greenness, was
	ND v1, the sateline imagery-based index informative of ground vegetation greenness, was
247	retrieved from the Copernicus Open Access Data Hub (Copernicus Sentinel-2 data, 2023).
247	retrieved from the Copernicus Open Access Data Hub (Copernicus Sentinel-2 data, 2023)
247 248	retrieved from the Copernicus Open Access Data Hub (Copernicus Sentinel-2 data, 2023) calculated from 10-m resolution bands)While the two above-mentioned quadrates were
247 248 249	retrieved from the Copernicus Open Access Data Hub (Copernicus Sentinel-2 data, 2023) calculated from 10-m resolution bands)While the two above-mentioned quadrates were aimed at characterizing the structure/cover of the habitat, NDVI was used as an index of
247 248 249 250	retrieved from the Copernicus Open Access Data Hub (Copernicus Sentinel-2 data, 2023), calculated from 10-m resolution bands)While the two above-mentioned quadrates were aimed at characterizing the structure/cover of the habitat, NDVI was used as an index of habitat quality. To characterize For each site and sampling session, we used NDVI data
247 248 249 250 251	retrieved from the Copernicus Open Access Data Hub (Copernicus Sentinel-2 data, 2023) <u>a</u> calculated from 10-m resolution bands)While the two above-mentioned quadrates were aimed at characterizing the structure/cover of the habitat, NDVI was used as an index of habitat quality. To characterize For-each site and sampling session, we used NDVI data available for the closest day to the beginning of a sampling session, which was expected to
247 248 249 250 251 252	retrieved from the Copernicus Open Access Data Hub (Copernicus Sentinel-2 data, 2023) <u>s</u> calculated from 10-m resolution bands)While the two above-mentioned quadrates were aimed at characterizing the structure/cover of the habitat, NDVI was used as an index of habitat quality. To characterize For-each site and sampling session, we used NDVI data available for the closest day to the beginning of a sampling session, which was expected to represent the conditions experienced by the mice at the time of capture-(Supplementary

In this study, aA total of 273 adult mice were euthanized by means of cervical dislocation on
their day of capture, and a blood volume of at leastaround 100 µL was collected in lithiumheparinized tubes by cardiac puncture. The breeding status was confirmed for all individuals
during dissection. The whole liver, the left kidney, and the skull of every individual were also

260	collected for a complementary study. Because the two species could not be distinguished
261	visually, the spleen was also harvested from each mouse and subsequently analyzed for post-
262	hoc species identification using Cytochrome Oxidase I genotyping (as described in
263	Ganem et al. 2020).
264	Levels of albumin, alkaline phosphatase, alanine aminotransferase, amylase, total bilirubin,
265	blood urea nitrogen, total protein, globulin, glucose, calcium, phosphorus, potassium, and
266	sodium were successfully measured in the whole blood of 257 individuals immediately after
267	blood collection (Abaxis VETSCAN V2 technology with the Comprehensive diagnostic
268	profile cartridge), following the manufacturer's instructions. The coefficient of variation
269	(CV%) of measured levels of these markers was determined from data obtained by analyzing
270	a given blood sample twice. Samples from six adult striped mice (5 <i>R.bechuanae</i> , 1
271	<i>R.d.dilectus</i>) were used for these calculations. For these six samples, the calculated CV
272	equaled 5.6 \pm 1.9 %, which is consistent with the intra-test CV% provided in the
273	manufacturer's instruction manual for other mammal species (Supplementary Table 43).
 274	Data preparation and analysis
275	All statistical tests were carried out using the R software (version 4.2.1).
276	Habitat
277	Vegetation composition
278	Because the distribution of the variables describing the cover and vegetation type did not
279	meet the conditions necessary for further multivariate model based analyses, we performed a
280	Principal Component Analysis (package FactoMineR version 2.9) was performed, including
281	the 7 variables measured within the $4m^2$ quadrats and within the $100m^2$ quadrats for each
282	successful trap (traps in which Rhabdomys was captured)aiming to transform and, as far as
283	possible, reduce the number of variables. In each case, over 80 % of the variance was
1	

284	explained by the first five Principal Components (Supplementary Tables 7-4 & 95). As
285	Multivariate normality was violated in our dataset, tThe distribution of the coordinates of all
286	traps on the first 5 PCs complied to the statistical analysis constraints and were used as
287	response variables of a <i>PERMANOVA</i> (package <i>vegan</i> , version 2.6-4). <i>PERMANOVA</i> is a
288	multivariate statistical inference tool using permutational algorithms (Anderson, 2001). This
289	equivalent to MANOVA operates in a distribution-free setting and is robust to non-normality
290	of residuals as well as dispersion heterogeneity, even in slightly unbalanced designs
291	(Anderson, 2013). We tested differences between sites nested within sessions (start and end of
292	dry season), with 10 000 permutations, to assess whether the sites had similar enough habitat
293	characteristics to be considered as suitable replicates in other analyses.
294	<u>NDVI</u>
295	NDVI was averaged over a 60 m radius circular buffer for centered at each trap and then
l 296	compared across sessions and sites using a GLM Analysis of Variance, with the site nested
297	within session. To meet ANOVA-statistical test prerequisites, the response variable was log-
1 298	transformed; the analysis was followed by Tukey multiple comparisons of means post-hoc
299	tests.
300	Age classes
301	TrappedAmong trapped <i>Rhabdomys</i> , only adults were first assigned to age categories:
302	juveniles, selected for this study, subadults and the based on their size, general appearance
303	(EXPLAIN fur dullness, presence of scares), size-and/or breeding status. Body length of
304	trapped individuals varied between 5 and 12 cm. The body length of adult individuals
305	involved in the physiological study varied between 7.7 and 12 cm. To distinguish between
306	older and younger adults, mass was plotted against body length (Supplementary figure 86)

showing a curve defined by an allometric growth equation with a steeper slope at the highest

808	and lowest body length values. Since bone growth can significantly alter the concentration of
809	some physiological markers, and growth rate varies with age/body length, we considered 4

- length/age classes among the adults (Class A: [7.7:9 cm[; Class B : [9:10 cm[; Class C :
- **311** [10:11 cm[; Class D [11 cm:]).

312 Body condition

B13 We calculated a scaled massn index of body condition (log mass/log lengthusing the method)

- 814 described in Peig and Green (2009; see Supplementary Material for full formula), to assess
- the state of each individual's fat reserves (Schulte-Hostedde et al., 2005). To test whether
- 316 breeding status, age, habitat quality, increased dryness, and/or interspecific differences
- β17 influence body condition of studied individuals trapped in semi-arid locations, alinear mixed
- 818 <u>effect models n ANOVA was used were computed</u> with body condition as a response variable,
- site as a random factor and session, species, sex, session*species*sex (including all two-way
- 320 <u>interactions</u>), breeding status (nested within sex), age class and NDVI as explanatory
- 321 variables. Assumptions of normality and homoscedasticity of residuals were checked using
- 322 diagnostic plots (graphics package v.3.6.2.). A Tukey multiple comparisons of means post-
- 323 hoc test was applied to determine which inter-level differences were driving the significance
- 324 of each factorial effect having more than two modalities.

B25 Age classes

- B26 Trapped *Rhabdomys* were assigned to age categories: juveniles, subadults and adults based on
- 827 their general appearance, size and/or breeding status. Body length of trapped individuals
- 828 varied between 5 and 12 cm. The body length of adult individuals involved in the
- 829 physiological study varied between 7.7 and 12 cm. To distinguish between older and younger
- B30 adults, mass was plotted against body length (Supplementary figure 8) showing a curve

a mis en forme : Police : Gras

831	defined by an allometric growth equation with a steeper slope at the highest and lowest body	
832	length values. Since bone growth can significantly alter the concentration of some	
833	physiological markers, and growth rate varies with age/body length, we considered 4	
834	length/age classes (Class A: [7.7:9 cm[; Class B : [9:10 cm[; Class C : [10:11 cm[; Class D	
835	[11 cm:]).	
336	Physiology	
337		
838	We performed a Principal Component Analysis to identify outliers in the data set that could	
839	be potential measure errors. We first identified twelve outliers that we removed from further	
340	analyses. These outliers were animals from which we collected smaller volume of blood	
341	samples than recommended for the Vetscan or were heavily hemolyzed and flagged as such in	
342	the Vetscan analysis output. In addition, as total protein values were used by the Vetscan	
343	analyzer to infer the Globulin (GLOB) fraction of blood protein (with GLOB=TP-ALB), we	
344	considered this marker as not informative and removed this variable from our analyses.	
345	Finally, for 199 out of 257 samples, blood concentrations of creatinine (CRE) were flagged as	
346	being below the instrument's sensitivity threshold; we hence excluded CRE from subsequent	
347	analyses, as this imprecision would have hindered analytical performance.	
348	Due to covariance in variables such as blood physiological markers, multivariate statistical	
349	techniques provide a unique insight into the main patterns and effects driving variation in the	
850	data. As with habitat, multivariate normality was violated in our physiological dataset, so	
851	permutational multivariate analysis of variance (PERMANOVA) was performed. 10 000	
852	permutations were used, Thus, we performed a multivariate analysis with 236 blood samples,	
353	12 physiological parameters as response variables, site as a random factor, and session,	
354	species, sex, breeding status (nested within sex), body condition, age class, and NDVI as	
855	explanatory variables. As with habitat, multivariate normality was violated in our	

356	physiological dataset, so permutational multivariate analysis of variance (PERMANOVA) was
857	performed, using 10 000 permutations. A backwards stepwise model selection was performed
858	to retain the most parsimonious model. The best-fitting model was determined by the last
859	model before the first model that did not improve comparing all previous models, from least
360	to most complex, using the Corrected Akaike's Information Criterion (AICc) for
361	PERMANOVA (package AICePermanova version 0.0.2). We then sought to identify which of
362	the 12 physiological markers drove significantly the between-group differences evidenced
363	with the PERMANOVA. Because in the PERMANOVA package a dedicated function was not
364	available, To that effect, twelve post-hoc univariate linear ANOVA-mixed model -(LMM)
1 365	tests were performed (followed by backwards stepwise model selection), initially using the
366	parameters of the most parsimonious PERMANOVA model. Assumptions of normality and
367	homoscedasticity of residuals were checked using diagnostic plots. In the case of total
368	bilirubin, a permutation test had to be performed instead of the <u>ANOVA.LMM.</u> Through a
369	backwards stepwise model selection process, the final model retained was the last model
370	before the first model that did not improve based on the Akaike's Information Criterion
871	(AIC). For all tests, the significance level (α) was set at 0.05.
372	Results
373	Variation in habitat characteristics between species and sessions
374	Vegetation composition
375	We compared the vegetation characteristics surrounding each successful trap with a
376	PERMANOVA, using the first 5 Principal Component coordinates (Supplementary Tables 4
377	& 75-& 9) of each trap-quadrat as response variable, and site and session as explanatory
 378	variables. We detected significant differences in overall habitat characteristics between
879	sessions (4m ² and 100m ² : p<0.001), and sites nested within sessions ($\frac{4m^2 \text{ and } 100m^22x2m}{2x2m}$

880 and 10x10m: p<0.001), indicating clear site differences and seasonal effects on habitat 881 structure (Supplementary Figures 6-47 & 758). Although a permutational permutational 882 dispersion test showed indicated that these the latter patterns could be attributable at least in 883 part to differences in dispersion between sessions or sites (see Supplementary Material : 884 Tables 56&67; Figures 1,2,3&4terial), some general trends could be inferred from the data 885 (Supplementary Tables 87&108). Indeed, some differences between sites amounted to 886 differences between species. Quadrats from R.d.dilectus sites (Barberspan, Bloemhof and 387 Wolwespruit) tended to feature higher proportions of grass (mean $4m^2$: 83.99 ± 1.12 %, mean 388 $100m^2$: 71.42 ± 1.40 %) than *R.bechuanae* sites (mean 4m²: 54.30 ± 2.57 %, mean 100m²: 53.12 ± 1.84 %). Conversely, *R. bechuanae* sites (Benfontein, Gariep and Kalkfontein) tended 389 890 to feature higher proportions of bushes (mean $4m^2$: $\div 31.07 \pm 2.37$ %, mean $100m^2$: $: 27.35 \pm$ 391 1.42%) than *R.d. dilectus* sites (mean $4m^2$: 7.33 ± 1.00 %, mean $100m^2$: 10.49 ± 1.03 %). 392 Furthermore, differences between sessions could be observed; quadrats surveyed at the end of 393 the dry season tended to feature more dry grass (mean $4m^2$: 60.82 ± 2.33 %, mean $100m^2$: 894 $51.99 \pm 1.87 \frac{\%}{1.000}$ than at its onset (mean $4m^2$: $50.75 \pm 2.04 \%$, mean $100m^2$: $40.85 \pm 100m^2$) than at its onset (mean $4m^2$) than $4m^2$ is $100m^2$.

1.39 %).

395

396 NDVI

897 The log-transformed NDVI of sites sampled at the two sessions (2 sites per species), extracted 898 from satellite data, was also analyzed between sites and sessions using ANOVA. Site, session 399 and the interaction between these two variables (all p<0.001) contributed significantly to 400 explain the NDVI variation (Table 3). A post-hoc Tukey multiple comparisons of means test showed that all sites had a significantly lower NDVI in September compared to May (Figure 401 402 4), indicating a poorer state of the vegetation at the end of the dry season. Furthermore, while 403 these study locations were chosen in a region with similar semi-arid bioclimatic features, 404 Gariep Dam and Kalkfontein (where R.bechuanae was targeted) seemed to stand out as

405	having a lower NDVI than all other sites sampled in both May and in September, with
406	Wolwespruit and Bloemhof (where <i>R.d.dilectus</i> was targeted) having the highest NDVI
407	(Figure 4). Therefore, to take into account the impact of variations in NDVI between the two
408	species trapping locations we included site as a random factor in analyses addressing body
409	and physiological conditions.
410	Variation of Body condition
411	An <u>ANOVA-linear mixed model</u> assessed the influence of session, species, breeding status,
412	age class and NDVI on body condition, including site as a random factor. The most
413	parsimonious model included the significant effects of session sex (p<0.05001), age class
414	(p<0.001), breeding status nested within sex (p<0.0010.01) and the and the interaction
415	between the twobreeding status and session (p<0.05); session was not significant by itself
416	p=0.965, while), as well as the effect of NDVI verging verged on significance
417	(p=0.06 <u>766626</u>), and the interaction between session and sex (p=0. <u>6833286</u> , (Table 4). Body
418	condition was slightly higherlower at the end of the dry season than at its onset for non-
419	breeding females compared to breeding females , and non-breeding females had lower body
420	$\frac{1}{2}$ condition than breeding females and non-breeding males (post-hoc pairwise t-tests all p<0.05.
421	Supplementary Table 1110). The correlation between body condition and NDVI was
422	negative.
423	Variation in physiological responses
424	A PERMANOVA was performed using the distance matrix of 12 physiological markers as
425	response variables and session, species, sex, breeding status, body condition, age class, NDVI
426	and site (random factor) as explanatory variables (Supplementary table 1211).

- 427 The most parsimonious model (Table 5) indicated an overall difference in physiological
- 428 parameter concentrations between *R.bechuanae* and *R.d.dilectus* (p=0.002), as well as an

429	influence of body condition (p=0.019), breeding status (nested within sex) (p=0.028), that	
430	differed between the two species (interaction effect, p=0.022), and the interaction between sex	
431	and species (p=0.020). Session (p=0.065), and sex (p=0.084) verged on overall significance	
432	and were also included in the model, indicating that physiological markers overall tend to	
433	shift between the start and end of the dry season, and to vary between sexes. Importantly, both	
434	species showed the same pattern of variation between sessions (no significant species*session	
435	interaction effect, p=0.498, Supplementary Table <u>1211</u>).	
436	Six physiological markers showed significant differences between the start and the end of the	
437	dry season (Figure 5). Blood concentrations of markers of nutrition and liver function	
438	(albumin, potassium, alanine aminotransferase, alkaline phosphatase, and total bilirubin) were	
439	lower at the end compared to the onset of the dry season (Table 4). Glucose also showed that	
440	trend, but not significantly (p=0.0577). In contrast, globulin levels varied in the opposite	
441	direction (higher at the end compared to the onset of the dry season).	
442	The levels of four markers were significantly lower in <i>R.bechuanae</i> than in <i>R.d.dilectus</i> : total	
443	bilirubin, alkaline phosphatase (ALP), sodium and potassium (Table 6, Figure 6). However,	
444	amylase showed the opposite pattern between the species.	
445	Regardless of species, ALP levels were negatively correlated with body condition, while the	
446	levels of phosphorus exhibited the opposite pattern. Finally, the levels of glucose and ,-ALP	
447	and alanine aminotransferase (ALT) varied significantly with sex, tending to be lower in	
448	females than in males (Supplementary figure 79).	a
449	Discussion	
450	We asked how seasonal variation of dry conditions influenced the physiological response of	

- 451 semi-arid parapatric populations of two closely related *Rhabdomys* species that evolved under
- 452 distinct environmental conditions (du Toit et al., 2012). Consistent with our predictions, we

a mis en forme : Surlignage

453	found strong evidence for physiological divergence between the species. We also observed a
454	tendency for seasonal variation of the physiological response in both species related to
455	energetic resource depletion at the end of the dry season, supported by the shifts in the levels
456	of 6 blood parameters between the onset and the end of the dry season.
457	
458	Our study took place in a relatively wet year (La Niña). Vegetation growth and senescence
459	usually follow seasonal rainfall patterns; above-average rainfall widens the temporal window
460	for vegetation growth, improving habitat conditions at the start of the typical dry season
461	(Anyamba et al., 2002). Despite this, and consistent with our predictions, milder dry
462	conditions did alter habitat quality of our study sites (as attested by shifts in NDVI and habitat
463	structure).
464	
465	Seasonal variation of physiological condition
466	Despite our study year being relatively wet, mild dry conditions impacted blood marker
467	concentrations in <i>R.bechuanae</i> and <i>R.d.dilectus</i> . These changes involved 6 out of 12 tested
468	physiological markers, and included markers expected to vary in periods of dietary restriction,
469	such as albumin. Contrary to our prediction, we did not find a significant interactive effect
470	between session and species, suggesting that the semi-arid populations of the two species
471	were similarly affected by seasonal dry conditions. However, a follow up study during an El

- 472 Niño year may be necessary before one can conclude.
- 473 Water and nutritional stress are expected to impact the body condition of individuals (Fuller et
- al., 2021). Interestingly, the body condition of sampled individuals was higher at the end of
- 475 the dry season. As expected, body condition varied with breeding status, with differences
- 476 between breeding and non-breeding females heightened at the end of the dry season.

477 Additionally, several physiological markers varied significantly between males and females, 478 indicating their association with physiological processes involved in body mass regulation and 479 reproduction. Reproduction in mammals has direct physiological costs, associated with 480 increased energy, protein and calcium demands and indirectly through compensatory effects 481 such as reduction in thermogenesis, immune function and physical activity (Speakman, 2008; 482 Rintoul & Bringham, 2014; Stawski & Rojas, 2016; Schoepf et al., 2017b). It follows that 483 sex-specific differences in reproductive investments are associated with contrasts in body 484 weight, fat distribution and energy metabolism (Chen et al., 2012). In support, our results 485 indicate lower levels of blood glucose, and a lower body condition in females compared with males. Moreover, albumin (ALB) and alkaline phosphatase (ALP) were significantly elevated 486 487 in males compared to females, which could also be attributable to the pleiotropic effects of 488 sex hormones (Havill et al., 2004; Sullivan et al., 2007).

The two species responded similarly to increased dryness while maintaining body condition, a 489 proxy of fat reserves. Similarly, R. pumilio individuals tended to maintain their body condition 490 491 stable while reducing their energy expenditure and physical activity during periods of limited 492 food availability (Rimbach, Blanc et al., 2018; Rimbach, Jäger et al., 2018). The semi-arid 493 populations of *R.bechuanae* and *R.d.dilectus* could be displaying a similar behavioral strategy. 494 Variation in ALP levels is linked to variation in soft tissue and/or bone growth (Walker et al., 495 1990). As expected, ALP was also negatively correlated with body condition. Individuals with the lowest body condition had lower phosphorus levels. Generally, high phosphorus levels can 496 497 be observed in dehydrated individuals in which osmolality is high; indeed, low phosphorus 498 levels related to survival in *R.pumilio* at the peak of the dry season, where water balance was 499 hardest to maintain (Schoepf et al., 2017). However, blood levels of phosphorus also depend

500 on its consumption and hence availability in the food (Berndt & Kumar, 2009). Phosphorus

501	reserve depletion in smaller-sized adults might therefore be consistent with the role of
502	phosphorus intake as a promoter of bone and soft tissue growth (Shapiro & Heaney, 2003).
503	Furthermore, higher needs for phosphorus in smaller adults might be hindered by reduced
504	access to food. Indeed, foraging activity tends to vary between individuals according to size
505	and breeding status, possibly resulting in larger breeding individuals gaining access to higher
506	quality food (Ebensperger & Hurtado, 2005).

. .

....

(T. .1

507

508	Blood protein levels are generally good indicators of physiological condition (Tothova et al.,
509	2016). They comprise two distinct and major components: albumin (ALB) and globulins
510	(GLOB). In our study, ALB was significantly lower at the end than at the start of the dry
511	season. ALB is synthesized in the liver and involved in the transport of bilirubin and several
512	hormones. Blood ALB levels are less prevalent in malnourished individuals (Walker et al.,
513	1990), supporting the hypothesis of reduction of quality and/or availability of food at the end
514	of the dry season. The Nubian ibex Capra nubiana, a desert mammal, also displays low ALB
515	during the dry season (Al-Eissa et al., 2012), which could reflect poor nutritional conditions,
516	kidney dysfunction leading to poor water balance and high osmolality, or liver dysfunction
517	causing low ALB synthesis. We found that GLOB was significantly higher at the end than at
518	the start of the dry season. Higher GLOB levels were also reported for <i>R.pumilio</i> individuals
519	that did not survive the dry season (Schoepf et al., 2017). GLOB is a family of molecules
520	including immunity proteins and blood protein carriers (including transferrin). An increase in
521	GLOB levels usually indicates elevation of immunoglobulins and hence could suggest
522	heightened immune activity. Greater antibody production occurs in response to a higher
523	prevalence of respiratory infections during the dry season, e.g. in the Nubian goat (Abdelatif
524	et al., 2009), and/or reduced protein nutritional status in young birds (Lochmiller et al., 1993).

525	An increase in blood GLOB concentrations may also reflect high levels of transferrin (Walker
526	et al., 1990), a major GLOB that may accumulate in the blood in cases of severe iron
527	deficiency (Kasvosve & Delanghe, 2002). Hence, elevated blood GLOB levels at the end of
528	the dry season may indicate either or both depletion in iron resource (transferrin) and higher
529	vulnerability to infection (immunoglobulin), both resulting from or being aggravated by
530	reduced access to food. Lower levels of alkaline phosphatase (ALP), a liver enzyme, at the
531	end of the dry season in Rhabdomys, is also evidence of malnutrition and deficiency in
532	essential nutrients (proteins, magnesium, zinc) (Yousef et al., 2002; Saraç & Saygili, 2007;
533	Ray et al., 2017). Alanine aminotransferase (ALT), another marker of liver function, also
534	occurred at significantly lower concentrations at the end compared to the start of the dry
535	season, indicating a reduction in liver activity (Walker et al., 1990) or malnutrition (Le
536	Couteur et al., 2010). Indeed, as environmental resources become scarce, essential nutrients,
537	such as pyridoxine (or vitamin B6), that constitute some ALT coenzymes, may be less
538	available, leading to a reduction of ALT blood levels (Vespasiani-Gentilucci et al., 2018).
539	
540	Blood glucose, another major physiological marker of nutrition state, was also slightly
541	diminished at the end of the dry season, albeit not significantly. Fasting or low-energy feeding
542	results in lower blood glucose levels (Jensen et al., 2013).
543	
544	Acute starvation also typically causes bilirubin (TBIL) to accumulate in the blood, as the
545	enzymatic process for conversion of heme into TBIL is stimulated (Thaler et al., 1972). Yet,
546	TBIL was lower at the end compared to the onset of the dry season, rejecting the starvation
547	hypothesis. Lower TBIL concentrations at the end of the dry season in Rhabdomys could stem
548	from low hemoglobin counts because the body produces fewer red blood cells than usual; low
549	hemoglobin can be induced by several factors, among which dietary factors such as iron

550	deficiencies (Clark, 2008). Iron deficient anemia is also supported by higher GLOB
551	concentrations observed at the end of the dry season. Infection can likewise be a cause of both
552	decreased TBIL levels (Zhao et al., 2019) and higher GLOB concentrations at the end of the
553	dry season. Finally, malnutrition and/or lack of potassium intake are among the main potential
554	causes of the reduction of its levels in the blood (Their, 1986), which could explain why they
555	were the lowest at the end of the dry season, when the available resources were lowest, in our
556	study.

558	Overall, our results indicate that seasonal variation of some physiological markers could
559	reflect reduced primary productivity throughout the dry season, which is coherent with our
560	observation of habitat degradation (lower NDVI) at the end of the dry season. Blood
561	concentrations of various markers seem to indicate difficulties in maintaining nutritional
562	functions and the necessity of a higher immune output, caused or exacerbated by food
563	restriction. Indeed, individuals undergoing malnutrition during dry conditions are expected to
564	show low blood glucose concentrations, and deficiencies in essential nutrients, leading to
565	pathologies such as anemia (Gordon et al., 1988). Indeed, animals foraging on soils
566	potentially poor in nutrients such as iron, zinc, and magnesium are more prone to malnutrition
567	(Graham, 1991; Gupta et al., 2008). Higher GLOB, lower TBIL and lower ALP blood
568	concentrations in our study might relate to such deficiencies.
569	We did not observe seasonal variation of sodium or blood urea nitrogen, blood markers of
309	we did not observe seasonal variation of sodium of blood urea mitogen, blood markers of
570	kidney function or osmoregulation. Indeed, reduced environmental moisture at the end of the
571	dry season could have caused an overall increase in blood osmolality, increasing blood
572	concentrations of most biomarkers. Still, most markers exhibited a significant reduction in
573	blood concentrations. This suggests that, compared to food availability, seasonal patterns in

water availability may impose a milder physiological cost to the striped mice throughout the
dry season in this semi-arid environment during a La Niña (wet) episode.

576 Interspecific differences

R.bechuanae is thought to have evolved in drier environments than R.d.dilectus. Moreover, in 577 the semi-arid region where they co-occur, we showed that R.bechuanae populations occupy 578 579 slightly drier habitats than R.d.dilectus. While body condition did not differ significantly 580 between species, some interspecific contrasts support our hypothesis that *R.bechuanae* may have developed a better physiological capacity to cope with dry conditions than R.d.dilectus. 581 Among the markers exhibiting a significant difference between *R.bechuanae* and *R.d.dilectus*, 582 583 all but amylase showed higher blood concentrations in *R.d. dilectus*. Amylase is positively correlated with digestive activity and reflects differences in feeding status or diet composition 584 585 between the species (Hidalgo et al., 1999). Given the role of alpha-amylase in digestion, lower blood amylase levels in R.d.dilectus than R.bechuanae may indicate lower digestive 586 587 activity due to reduced access to food, or lower starch content in the diet. Pajic et al. (2019) 588 found a correlation between dietary starch content and the number of amylase gene copies in 589 several mammalian genomes, even in different habitats and with different diets. Since amylase activity and amylase gene expression are directly correlated with amylase gene copy 590 591 number (Arendt et al., 2014), further studies could elucidate the potential genetic basis of the 592 different levels of amylase in our two study species.

Sodium (NA) and potassium (K) concentrations, which depend on both dietary and water
intake, were higher in *R.d.dilectus* than in *R.bechuanae*. These differences, coupled with
higher ALP and TBIL concentrations in *R.d.dilectus* compared to *R.bechuanae*, could suggest
a better nutrition state for *R.d.dilectus* than *R.bechuanae*. However, higher levels of amylase

597	in R.bechuanae cast doubt on this interpretation. Instead, lower levels of blood NA, K, ALP,
598	and TBIL, would be more parsimoniously attributed to lower overall osmolality, perhaps due
599	to better water balance, in R.bechuanae. A better overall ability of R.bechuanae to conserve
600	body moisture could rely on physiological mechanisms such as more efficient excretion or
601	osmoregulation, or through feeding on a diet optimizing water intake. We hypothesize that
602	during the evolutionary history of <i>R.bechuanae</i> , selection pressures may have favored specific
603	strategies allowing an overall more efficient water regulation compared to R.d.dilectus. These
604	results, combined with the reduction in the levels of K, ALP and TBIL at the end of the dry
605	season suggest the both species are exposed to both water and nutrition stress.
606	We found relatively little evidence that the two species suffer differentially from lack of food
607	in their semi-arid environment during a dry season impacted by La Niña phenomenon.
608	Overall, energy levels, as indicated by blood glucose, and body condition, did not vary
609	between the species. Instead, it seems that the overall differences between the two species can
610	be accounted for by lower blood osmolality concentrations-in R.bechuanae, and on average
611	higher blood concentrations in key metabolitesosmolality in R.d.dilectus, as evidenced by
612	differences in NA and K concentrations, possibly due to overall poorer water regulation. High
613	average blood amylase levels in <i>R.bechuanae</i> , compared to <i>R.d.dilectus</i> during the dry season,
614	might indicate an interspecific difference in diet composition or food intake, although rather
615	than not-protein-energy malnutrition. Little is known about <i>R.bechuanae</i> and <i>R.d.dilectus</i>
616	diets; the genus was characterised as a generalist feeding on seeds and other plant material,
617	and insects (Curtis & Perrin, 1979). Some studies showed variation in diet composition within
618	Rhabdomys genus associated with variation in local resources (Taylor & Green, 1976). The
619	two species could have adjusted their diet to the respective local availabilities of different
620	food resources within their home ranges. For example, during the dry season and in the semi-
621	arid zone, arthropod biomass and diversity is affected by seasonal patterns in rainfall.

622	Dalerum et al. (2017) found lower arthropod trapping success and diversity during the dry
623	season, in shrub habitats compared to any other biomes, in Benfontein Game Reserve, one of
624	our study sites. Thus, compared to seeds, the reliability of arthropods as a food source during
625	dry conditions could be lower in shrublands, inhabited by R.bechuanae across its range and
626	by both species in parapatry, than in grasslands inhabited by <i>R.d.dilectus</i> in allopatry.
627	Variation in seed composition could also explain this interspecific difference in amylase
628	concentrations. Indeed, granivores prefer seeds that have higher protein content and lower
629	secondary metabolites but may be forced to take a wider range of seeds in dry areas than in
630	mesic ones (Wilmer et al., 2009). If the hypothesis of a relatively ancient adaptation of
631	<i>R.bechuanae</i> to dry habitats is true, it could be expected that it would also have adjusted its
632	diet to the specific conditions encountered in dry habitats. Within this ecosystem,
633	<i>R.bechuanae</i> could forage more efficiently compared with <i>R.d.dilectus</i> , which evolved in a
634	more mesic environment; its diet could also be richer in starch (such as containing more
635	seeds/grains than leaves or fibre). Higher starch intake could help maintaining water balance a_{a} ;
636	starch is being the best substrate for metabolic water production in a dry environment
637	(Adolph, 1964). This is consistent with the other interspecific differences revealed in this
638	study, as diet can also significantly affect osmoregulation (Sabat et al., 2009).
639	
640	Perspectives and conclusions
641	Due to climate change, populations of many species experience changes in their habitats
642	affecting their fitness and inducing shifts in their geographical distribution (Parmesan et al.,

643 2006; Fuller et al., 2010). In some species, range shifts are expected to swell edge

644 populations, as marginal habitats grow more favourable. For instance, edge populations of

- 645 *Wilsonia citrina* hooded warblers have repeatedly expanded their ranges due to climate
- 646 change (Melles et al., 2011). In other species, the quality of marginal habitats occupied by

647	populations at the range edge may decline in because of reduced food availability or nutrient	
648	richness, making these populations particularly vulnerable to climate change and inducing	
649	range contraction. For example, the koala Phascolarctos cinereus experiences declines in	
650	population sizes and habitat contraction due to droughts (Seabrook et al., 2011). As such,	
651	depending on their phenotypic plasticity, edge populations may hold the key to the survival of	
652	a species in a changing environment (Wu & Seebacher, 2022, Usui et al., 2023).	
653	<i>R.d.dilectus</i> edge populations may experience the same situation, as the example above, in	
654	the semi-arid zone, an hypothesis that could be tested addressing these populations dynamics,	
655	compared to <i>R.bechuanae</i> semi-arid populations.	
656		
657	Conclusions	
658	In this study, wWe found that two closely related species with different ecological	
659	characteristics displayed similar seasonal negative shifts in blood concentrations of markers of	
660	nutrition and liver function in spite of a relatively mild seasonal drying of their habitats. We	
661	hence expect the physiological impact of harsher dry conditions, to affect the individuals'	
662	fitness even more dramatically. The fact that the habitat of <i>R.bechuanae</i> studied populations	
663	was the driest at both time points, combined with our findings concerning their overall better	
664	water balance and nutrition than R.d.dilectus, point towards R.bechuanae coping better in the	
665	semi-arid environment during the dry season. Though adaptation per se cannot be inferred	
666	from our study, this comparative study considering populations of the two species in the same	
667	biogeographic zone adds to the growing evidence that these cryptic species of striped mice	
668	have diverged phenotypically. These finally Overall, these findings show the ecological	
669	relevance of physiological approaches in investigating the effect of climatic variation on	
670	organisms and question resilience of core populations of arid species and edge populations of	
671	mesic species in the face of predicted enhanced aridification.	

672

673 Acknowledgements

- 574 We thank R.Nokha who provided valuable and substantial field work contribution to this
- 675 project. Constructive and insightful comments were provided by C.Smadja and C.Schradin
- 676 helped improve a previous version of this paper. Technical support by D.Greuet (INM),
- 677 L.Paradis (Geomatics, ISEM) and GenSeq platform. We are grateful to the rangers and
- 678 personnel of Barberspan Bird Sanctuary, Benfontein Nature Reserve, Bloemhof Dam Nature
- 679 Reserve, Gariep Dam Nature Reserve, Kalkfontein Dam Nature Reserve and Wolwespruit
- 680 Nature Reserve who facilitated our work in these locations. Funding: CNRS/NRF, & OSU-
- 681 OREME

682 Author contributions

- 683 G.G. conceived the idea and designed methodology with input from H.K; G.G., H.K., P.C.,
- 684 collected the data; H.K. analyzed the data with input from G.G.; H.K. wrote the first draft of
- the manuscript with input from G.G.; N.P. and N.A. contributed critically to the manuscript,
- 686 secured funding for the project with G.G. and helped with field logistics. All authors approved
- 687 the final version of the manuscript.
- 688 Conflict of Interest statement
- 689 The authors declare they have no conflict of interest.

690 References

- 691 Abaxis, Inc. "VS2 Operator's Manual." (2009) Retrieved from https://www.zoetis.es/ locale-
- 692 <u>assets/spc/vetscan-vs2-analizador.pdf</u>
- 693 Abdelatif, Abdallah M., Mariam Y. Ibrahim, and Yahia Y. Hassan. "Seasonal variation in
- 694 erythrocytic and leukocytic indices and serum proteins of female Nubian goats." Middle-

Code de champ modifié

695	Eastern Journal of Scientific Research, 4, no.3 (2009): 168-174. Retrieved from	
696	https://idosi.org/mejsr/mejsr4(3)/9.pdf	Code de champ modifié
697	Abraham, Joel O., Gareth P. Hempson, and A. Carla Staver. "Drought-response Strategies of	
698	Savanna Herbivores." Ecology and Evolution 9, no. 12 (May 22, 2019): 7047-56.	
699	https://doi.org/10.1002/ece3.5270.	Code de champ modifié
700	Adolph, Edward F. "Desert Animals: Physiological Problems of Heat and Water. Knut	
701	Schmidt-Nielsen." Physiological Zoology 37, no. 3 (July 1964): 338-39.	
702	https://doi.org/10.1086/physzool.37.3.30152404.	Code de champ modifié
703	AL Eissa, M S, Alkahtani Saad, S A Al Farraj, A Alarifi Saud, B Al Dahmash, and Al Yahya	
704	Hamad. "Seasonal Variation Effects on the Composition of Blood in Nubian Ibex (Capra	
705	Nubiana) in Saudi Arabia." African Journal of Biotechnology 11, no. 5 (January 16, 2012):	
706	1283–86. <u>https://doi.org/10.5897/ajb11.2004</u> .	Code de champ modifié
707	Anyamba, Assaf, Compton J. Tucker, and Robert Mahoney. "From El Niño to La Niña:	
708	Vegetation Response Patterns over East and Southern Africa during the 1997–2000 Period."	
709	Journal of Climate 15, no. 21 (November 1, 2002): 3096–3103. <u>https://doi.org/10.1175/1520-</u>	Code de champ modifié
710	<u>0442(2002)015<3096:FENOTL>2.0.CO;2</u> .	
711	Arendt, Maja, Tove Fall, Kerstin Lindblad-Toh, and Erik Axelsson. "Amylase Activity Is	
712	Associated with AMY2B Copy Numbers in Dog: Implications for Dog Domestication, Diet	
713	and Diabetes." Animal Genetics 45, no. 5 (June 28, 2014): 716-22.	
714	https://doi.org/10.1111/age.12179.	Code de champ modifié

715	Berkel, Caglar, and Ercan Cacan. "The Differential Influence of Ambient Temperature on		
716	Heart Rate in Male and Female Wild Pale-Throated Sloths (Bradypus Tridactylus)." Research		
717	Square Platform LLC, August 12, 2022. <u>http://dx.doi.org/10.21203/rs.3.rs-1908943/v1</u> .		Code de champ modifié
1			
718	Berndt, Theresa, and Rajiv Kumar. "Novel Mechanisms in the Regulation of Phosphorus		a mis en forme : Couleur de police : Rouge, Barré
719	Homeostasis." Physiology 24, no. 1 (February 2009): 17–25.		
720	https://doi.org/10.1152/physiol.00034.2008.	<	a mis en forme : Couleur de police : Rouge, Barré
			a mis en forme : Couleur de police : Rouge, Barré
721	Bittner, Noëlle K. J., Katya L. Mack, and Michael W. Nachman. "Gene Expression Plasticity		
722	and Desert Adaptation in House Mice*." Evolution 75, no. 6 (January 23, 2021): 1477-91.		
723	https://doi.org/10.1111/evo.14172.		Code de champ modifié
724	Blanquart, François, Oliver Kaltz, Scott L. Nuismer, and Sylvain Gandon. "A Practical Guide		a mis en forme : Anglais (États-Unis)
725	to Measuring Local Adaptation." Ecology Letters 16, no. 9 (July 15, 2013): 1195–1205.		
726	https://doi.org/10.1111/ele.12150.		Code de champ modifié
727	Boyers, Melinda, Francesca Parrini, Norman Owen-Smith, Barend F. N. Erasmus, and Robyn		
728	S. Hetem. "Contrasting Capabilities of Two Ungulate Species to Cope with Extremes of		
729	Aridity." Scientific Reports 11, no. 1 (February 18, 2021). https://doi.org/10.1038/s41598-		Code de champ modifié
730	<u>021-83732-w</u> .		
731	Chen, Xuqi, Rebecca McClusky, Jenny Chen, Simon W. Beaven, Peter Tontonoz, Arthur P.		
732	Arnold, and Karen Reue. "The Number of X Chromosomes Causes Sex Differences in		
733	Adiposity in Mice." PLoS Genetics 8, no. 5 (May 10, 2012): e1002709.		
734	https://doi.org/10.1371/journal.pgen.1002709.		Code de champ modifié
735	Clark, Susan F. "Iron Deficiency Anemia." Nutrition in Clinical Practice 23, no. 2 (April		
736	2008): 128-41. https://doi.org/10.1177/0884533608314536.		Code de champ modifié

737	Curtis, B.A., and M.R. Perrin. "Food Preferences of the Vlei Rat (Otomys Irroratus) and the		
738	Four-Striped Mouse (Rhabdomys Pumilio)." South African Journal of Zoology 14, no. 4		
739	(January 1979): 224–29. <u>https://doi.org/10.1080/02541858.1979.11447675</u> .	(Code de champ modifié
740	Dalerum, Fredrik, J. Low de Vries, Christian W.W. Pirk, and Elissa Z. Cameron. "Spatial and		
741	Temporal Dimensions to the Taxonomic Diversity of Arthropods in an Arid Grassland		
742	Savannah." Journal of Arid Environments 144 (September 2017): 21-30.		
743	https://doi.org/10.1016/j.jaridenv.2017.04.002.	(Code de champ modifié
744	Toit, Nina du, Bettine Jansen van Vuuren, Sonja Matthee, and Conrad A. Matthee. "Biome		
745	Specificity of Distinct Genetic Lineages within the Four-Striped Mouse Rhabdomys Pumilio		
746	(Rodentia: Muridae) from Southern Africa with Implications for Taxonomy." Molecular		
747	Phylogenetics and Evolution 65, no. 1 (October 2012): 75-86.		
748	https://doi.org/10.1016/j.ympev.2012.05.036.		Code de champ modifié
749	Davies, Kelvin J.A. "Adaptive Homeostasis." Molecular Aspects of Medicine 49 (June 2016):	(a mis en forme : Couleur de police : Rouge
750	<u>1–7. https://doi.org/10.1016/j.mam.2016.04.007.</u>	(a mis en forme : Couleur de police : Rouge
			a mis en forme : Couleur de police : Rouge
751	<u>۸</u>	\sim	a mis en forme : Police :
752	Dufour, Claire M. S., Christine Meynard, Johan Watson, Camille Rioux, Simon Benhamou,		a mis en forme : Retrait : Gauche : 0 cm, Suspendu : 1,27 cm, Espace Avant : 0 pt, Après : 0 pt, Avec coupure mots, Alignement de la police : Automatique
753	Julie Perez, Jurie J. du Plessis, Nico Avenant, Neville Pillay, and Guila Ganem. "Space Use		
754	Variation in Co-Occurring Sister Species: Response to Environmental Variation or		
755	Competition?" PLOS ONE 10, no. 2 (February 18, 2015): e0117750.		
756	https://doi.org/10.1371/journal.pone.0117750.	(Code de champ modifié
757	Dufour, Claire M. S., Neville Pillay, Nico Avenant, Johan Watson, Etienne Loire, and Guila		

758 Ganem. "Habitat Characteristics and Species Interference Influence Space Use and Nest-site

759	Occupancy: Implications for Social Variation in Two Sister Species." Oikos 128, no. 4		
760	(November 15, 2018): 503–16. <u>https://doi.org/10.1111/oik.05357</u> .		Code de champ modifié
1			
761	Ebensperger, Luis A., and María J. Hurtado. "On the Relationship between Herbaceous Cover		a mis en forme : Couleur de police : Rouge, Barré
762	and Vigilance Activity of Degus (Octodon Degus)." Ethology 111, no. 6 (May 31, 2005):		
763	593_608. <u>https://doi.org/10.1111/j.1439-0310.2005.01084.x</u>		a mis en forme : Couleur de police : Rouge, Barré
		1	a mis en forme : Couleur de police : Rouge, Barré
764	Feder, M. E., and B. A. Block. "On the Future of Animal Physiological Ecology." Functional		
765	Ecology 5, no. 2 (1991): 136. <u>https://doi.org/10.2307/2389251</u> .		Code de champ modifié
766	Fuller, Andrea, Duncan Mitchell, Shane K. Maloney, and Robyn S. Hetem. "Towards a		
767	Mechanistic Understanding of the Responses of Large Terrestrial Mammals to Heat and		
768	Aridity Associated with Climate Change." Climate Change Responses 3, no. 1 (November 28,		
769	2016). https://doi.org/10.1186/s40665-016-0024-1.		Code de champ modifié
770	Fuller, Andrea, Duncan Mitchell, Shane K. Maloney, Robyn S. Hetem, Vinicius F. C.		
770 771	Fuller, Andrea, Duncan Mitchell, Shane K. Maloney, Robyn S. Hetem, Vinicius F. C. Fonsêca, Leith C. R. Meyer, Tanja M. F. N. van de Ven, and Edward P. Snelling. "How		
771	Fonsêca, Leith C. R. Meyer, Tanja M. F. N. van de Ven, and Edward P. Snelling. "How		
771 772	Fonsêca, Leith C. R. Meyer, Tanja M. F. N. van de Ven, and Edward P. Snelling. "How Dryland Mammals Will Respond to Climate Change: The Effects of Body Size, Heat Load		Code de champ modifié
771 772 773	Fonsêca, Leith C. R. Meyer, Tanja M. F. N. van de Ven, and Edward P. Snelling. "How Dryland Mammals Will Respond to Climate Change: The Effects of Body Size, Heat Load and a Lack of Food and Water." Journal of Experimental Biology 224, no. Suppl_1 (February 15, 2021). <u>https://doi.org/10.1242/jeb.238113</u> .		Code de champ modifié
771 772 773	Fonsêca, Leith C. R. Meyer, Tanja M. F. N. van de Ven, and Edward P. Snelling. "How Dryland Mammals Will Respond to Climate Change: The Effects of Body Size, Heat Load and a Lack of Food and Water." Journal of Experimental Biology 224, no. Suppl_1 (February		Code de champ modifié
771 772 773 774	Fonsêca, Leith C. R. Meyer, Tanja M. F. N. van de Ven, and Edward P. Snelling. "How Dryland Mammals Will Respond to Climate Change: The Effects of Body Size, Heat Load and a Lack of Food and Water." Journal of Experimental Biology 224, no. Suppl_1 (February 15, 2021). <u>https://doi.org/10.1242/jeb.238113</u> .		Code de champ modifié
771 772 773 774 775	 Fonsêca, Leith C. R. Meyer, Tanja M. F. N. van de Ven, and Edward P. Snelling. "How Dryland Mammals Will Respond to Climate Change: The Effects of Body Size, Heat Load and a Lack of Food and Water." Journal of Experimental Biology 224, no. Suppl_1 (February 15, 2021). <u>https://doi.org/10.1242/jeb.238113</u>. Fuller, Andrea, Terence Dawson, Brian Helmuth, Robyn S. Hetem, Duncan Mitchell, and 		Code de champ modifié
 771 772 773 774 775 776 	 Fonsêca, Leith C. R. Meyer, Tanja M. F. N. van de Ven, and Edward P. Snelling. "How Dryland Mammals Will Respond to Climate Change: The Effects of Body Size, Heat Load and a Lack of Food and Water." Journal of Experimental Biology 224, no. Suppl_1 (February 15, 2021). <u>https://doi.org/10.1242/jeb.238113</u>. Fuller, Andrea, Terence Dawson, Brian Helmuth, Robyn S. Hetem, Duncan Mitchell, and Shane K. Maloney. "Physiological Mechanisms in Coping with Climate Change." 		Code de champ modifié Code de champ modifié

780 Christelle Tougard, and Neville Pillay. "An Update on the Distribution and Diversification of

781	Rhabdomys Sp. (Muridae, Rodentia)." Journal of Vertebrate Biology 69, no. 2 (July 7, 2020):		
782	1. <u>https://doi.org/10.25225/jvb.20013</u> .	Code de champ modifié	
783	Gordon, G., A. S. Brown, and T. Pulsford. "A Koala (Phascolarctos Cinereus Goldfuss)		
784	Population Crash during Drought and Heatwave Conditions in South-western Queensland."		
785	Australian Journal of Ecology 13, no. 4 (December 1988): 451-61.		
786	https://doi.org/10.1111/j.1442-9993.1988.tb00993.x.	Code de champ modifié	
787	Graham, Thomas W. "Trace Element Deficiencies in Cattle." Veterinary Clinics of North		
788	America: Food Animal Practice 7, no. 1 (March 1991): 153-215.		
789	https://doi.org/10.1016/s0749-0720(15)30816-1.	Code de champ modifié	
790	Gupta, Umesh C., Kening Wu, and Siyuan Liang. "Micronutrients in Soils, Crops, and		
791	Livestock." Earth Science Frontiers 15, no. 5 (September 2008): 110-25.		
792	https://doi.org/10.1016/s1872-5791(09)60003-8.	Code de champ modifié	
		· · ·	
793	Havill, L.M, M.C Mahaney, and J Rogers. "Genotype-by-Sex and Environment-by-Sex		
794	Interactions Influence Variation in Serum Levels of Bone-Specific Alkaline Phosphatase in		
795	Adult Baboons (Papio Hamadryas)." Bone 35, no. 1 (July 2004): 198-203.		
796	https://doi.org/10.1016/j.bone.2004.02.022.	Code de champ modifié	
		· · ·	
797	Hidalgo, M.C, E Urea, and A Sanz. "Comparative Study of Digestive Enzymes in Fish with		
798	Different Nutritional Habits. Proteolytic and Amylase Activities." Aquaculture 170, no. 3-4		
799	(January 1999): 267-83. <u>https://doi.org/10.1016/s0044-8486(98)00413-x</u> .	Code de champ modifié	
800	Havill, L.M, M.C Mahaney, and J Rogers. "Genotype-by-Sex and Environment-by-Sex		

801 Interactions Influence Variation in Serum Levels of Bone-Specific Alkaline Phosphatase in

802	Adult Baboons (Papio Hamadryas)." Bone 35, no. 1 (July 2004): 198–203.	
803	https://doi.org/10.1016/j.bone.2004.02.022.	Code de champ modifié
804	Jury, Mark R. "Spreading of the Semi-Arid Climate across South Africa." Journal of Water	
805	and Climate Change 12, no. 8 (October 1, 2021): 3734–49.	
806	https://doi.org/10.2166/wcc.2021.187	Code de champ modifié
807	Kasvosve, Ishmael, and Joris Delanghe. "Total Iron Binding Capacity and Transferrin	
808	Concentration in the Assessment of Iron Status." Clinical Chemistry and Laboratory Medicine	
809	40, no. 10 (January 29, 2002). https://doi.org/10.1515/cclm.2002.176.	Code de champ modifié
810	Kawecki, Tadeusz J., and Dieter Ebert. "Conceptual Issues in Local Adaptation." Ecology	
811	Letters 7, no. 12 (November 12, 2004): 1225–41. <u>https://doi.org/10.1111/j.1461-</u>	Code de champ modifié
812	<u>0248.2004.00684.x</u> .	
813	Kobbe, Susanne, Jörg U. Ganzhorn, and Kathrin H. Dausmann. "Extreme Individual	
814	Flexibility of Heterothermy in Free-Ranging Malagasy Mouse Lemurs (Microcebus	
815	Griseorufus)." Journal of Comparative Physiology B 181, no. 1 (August 18, 2010): 165–73.	
816	https://doi.org/10.1007/s00360-010-0507-5.	Code de champ modifié
817	Le Couteur, D. G., F. M. Blyth, H. M. Creasey, D. J. Handelsman, V. Naganathan, P. N.	
818	Sambrook, M. J. Seibel, L. M. Waite, and R. G. Cumming. "The Association of Alanine	
819	Transaminase With Aging, Frailty, and Mortality." The Journals of Gerontology Series A:	
820	Biological Sciences and Medical Sciences 65A, no. 7 (May 24, 2010): 712-17.	
821	https://doi.org/10.1093/gerona/glq082.	Code de champ modifié
822	Lian, Xu, Shilong Piao, Anping Chen, Chris Huntingford, Bojie Fu, Laurent Z. X. Li,	
823	Jianping Huang, et al. "Multifaceted Characteristics of Dryland Aridity Changes in a	

824	Warming World." Nature Reviews Earth & amp; Environment 2, no. 4 (March 9, 2021): 232–	
825	50. <u>https://doi.org/10.1038/s43017-021-00144-0</u> .	Code de champ modifié
826	Lochmiller, Robert L., Michelle R. Vestey, and Jon C. Boren. "Relationship between Protein	
827	Nutritional Status and Immunocompetence in Northern Bobwhite Chicks." The Auk 110, no.	
828	3 (July 1993): 503–10. <u>https://doi.org/10.2307/4088414</u> .	 Code de champ modifié
829	López-Maury, Luis, Samuel Marguerat, and Jürg Bähler. "Tuning Gene Expression to	
830	Changing Environments: From Rapid Responses to Evolutionary Adaptation." Nature	
831	Reviews Genetics 9, no. 8 (August 2008): 583–93. <u>https://doi.org/10.1038/nrg2398</u> .	 Code de champ modifié
832	Melles, S. J., MJ. Fortin, K. Lindsay, and D. Badzinski. "Expanding Northward: Influence	
833	of Climate Change, Forest Connectivity, and Population Processes on a Threatened Species'	
834	Range Shift." Global Change Biology 17, no. 1 (December 1, 2010): 17–31.	
835	https://doi.org/10.1111/j.1365-2486.2010.02214.x.	 Code de champ modifié
836	McClure, Diane E. "Clinical Pathology and Sample Collection in the Laboratory Rodent."	
837	Veterinary Clinics of North America: Exotic Animal Practice 2, no. 3 (September 1999): 565–	
838	90. <u>https://doi.org/10.1016/s1094-9194(17)30111-1</u> .	Code de champ modifié
839	Merilä, Juha, and Andrew P. Hendry. "Climate Change, Adaptation, and Phenotypic	
840	Plasticity: The Problem and the Evidence." Evolutionary Applications 7, no. 1 (January	
841	2014): 1–14. https://doi.org/10.1111/eva.12137.	Code de champ modifié
842	Meynard, Christine N., Neville Pillay, Manon Perrigault, Pierre Caminade, and Guila Ganem.	
843	"Evidence of Environmental Niche Differentiation in the Striped Mouse (Rhabdomys Sp.):	
844	Inference from Its Current Distribution in Southern Africa." Ecology and Evolution 2, no. 5	
845	(April 12, 2012): 1008–23. <u>https://doi.org/10.1002/ece3.219</u> .	 Code de champ modifié

846	Muñoz-Garcia, Agustí, Miriam Ben-Hamo, Shai Pilosof, Joseph B. Williams, and Carmi	
847	Korine. "Habitat Aridity as a Determinant of the Trade-off between Water Conservation and	
848	Evaporative Heat Loss in Bats." Journal of Comparative Physiology B 192, no. 2 (January 17,	
849	2022): 325–33. <u>https://doi.org/10.1007/s00360-021-01425-2</u> .	Code de champ modifié
850	Naumann, G., L. Alfieri, K. Wyser, L. Mentaschi, R. A. Betts, H. Carrao, J. Spinoni, J. Vogt,	
851	and L. Feyen. "Global Changes in Drought Conditions Under Different Levels of Warming."	
852	Geophysical Research Letters 45, no. 7 (April 13, 2018): 3285–96.	
853	https://doi.org/10.1002/2017gl076521.	Code de champ modifié
854	Naya, Daniel E., Claudio Veloso, Pablo Sabat, and Francisco Bozinovic. "Physiological	
855	Flexibility and Climate Change: The Case of Digestive Function Regulation in Lizards."	
856	Comparative Biochemistry and Physiology Part A: Molecular & amp; Integrative Physiology	
857	159, no. 1 (May 2011): 100–104. <u>https://doi.org/10.1016/j.cbpa.2011.02.005</u> .	 Code de champ modifié
858	Nicholson, S.E., and J.C. Selato. "The Influence of La Nina on African Rainfall."	
859	International Journal of Climatology 20, no. 14 (n.d.): 1761–76. https://doi.org/10.1002/1097-	Code de champ modifié
860	<u>0088(20001130)20:14<1761::AID-JOC580>3.0.CO;2-W</u> .	
861	Ostrowski, Stéphane, Joseph B. Williams, Pascal Mésochina, and Helga Sauerwein.	
862	"Physiological Acclimation of a Desert Antelope, Arabian Oryx (Oryx Leucoryx), to Long-	
863	Term Food and Water Restriction." Journal of Comparative Physiology B 176, no. 3	
864	(November 9, 2005): 191–201. <u>https://doi.org/10.1007/s00360-005-0040-0</u> .	 Code de champ modifié
0.07		
865	Pajic, Petar, Pavlos Pavlidis, Kirsten Dean, Lubov Neznanova, Rose-Anne Romano, Danielle	
866	Garneau, Erin Daugherity, Anja Globig, Stefan Ruhl, and Omer Gokcumen. "Independent	
867	Amylase Gene Copy Number Bursts Correlate with Dietary Preferences in Mammals." eLife	
868	8 (May 14, 2019). <u>https://doi.org/10.7554/elife.44628</u> .	 Code de champ modifié

869	Parmesan, Camille. "Ecological and Evolutionary Responses to Recent Climate Change."		
870	Annual Review of Ecology, Evolution, and Systematics 37, no. 1 (December 1, 2006): 637-		
871	69. <u>https://doi.org/10.1146/annurev.ecolsys.37.091305.110100</u> .		Code de champ modifié
872	Parmesan, Camille, Terry L. Root, and Michael R. Willig. "Impacts of Extreme Weather and		
873	Climate on Terrestrial Biota." Bulletin of the American Meteorological Society 81, no. 3		
874	(March 1, 2000): 443–50. <u>https://doi.org/10.1175/1520-</u>		Code de champ modifié
875	<u>0477(2000)081<0443:IOEWAC>2.3.CO;2</u> .		
876	Peig, Jordi, and Andy J. Green. "New Perspectives for Estimating Body Condition from	_	a mis en forme : Anglais (États-Unis)
877	Mass/Length Data: The Scaled Mass Index as an Alternative Method." Oikos 118, no. 12		
878	(November 30, 2009): 1883–91. https://doi.org/10.1111/j.1600-0706.2009.17643.x.		
879	•		a mis en forme : Police :Français (France)
880	Post, Eric, Jedediah Brodie, Mark Hebblewhite, Angela D. Anders, Julie A. K. Maier, and		
881	Christopher C. Wilmers. "Global Population Dynamics and Hot Spots of Response to Climate		
882	Change." BioScience 59, no. 6 (June 2009): 489–97. <u>https://doi.org/10.1525/bio.2009.59.6.7</u> .		Code de champ modifié
883	Rimbach, Rebecca, Stéphane Blanc, Alexandre Zahariev, Maria Gatta, Neville Pillay, and		
884	Carsten Schradin. "Seasonal Variation in Energy Expenditure in a Rodent Inhabiting a		
885	Winter-Rainfall Desert." Journal of Comparative Physiology B 188, no. 5 (June 8, 2018):		
886	877-88. https://doi.org/10.1007/s00360-018-1168-z.		Code de champ modifié
0.07			
887	Rimbach, Rebecca, Jörg Jäger, Neville Pillay, and Carsten Schradin. "Food Availability Is the		
888	Main Driver of Seasonal Changes in Resting Metabolic Rate in African Striped Mice		
889	(Rhabdomys Pumilio)." Physiological and Biochemical Zoology 91, no. 2 (March 2018):		
890	826-33. <u>https://doi.org/10.1086/696828</u> .		Code de champ modifié

891	Rintoul, Jody L. P., and R. Mark Brigham. "The Influence of Reproductive Condition and		
892	Concurrent Environmental Factors on Torpor and Foraging Patterns in Female Big Brown		
893	Bats (Eptesicus Fuscus)." Journal of Comparative Physiology B 184, no. 6 (June 28, 2014):		
894	777-87. <u>https://doi.org/10.1007/s00360-014-0837-9</u> .		Code de champ modifié
005			
895	Rocha, Joana L., Raquel Godinho, José C. Brito, and Rasmus Nielsen. "Life in Deserts: The		
896	Genetic Basis of Mammalian Desert Adaptation." Trends in Ecology & amp; Evolution 36, no.		
897	7 (July 2021): 637–50. <u>https://doi.org/10.1016/j.tree.2021.03.007</u> .		Code de champ modifié
898	Sabat, Pablo, Sandra Gonzalez-Vejares, and Karin Maldonado. "Diet and Habitat Aridity		
899	Affect Osmoregulatory Physiology: An Intraspecific Field Study along Environmental		
900	Gradients in the Rufous-Collared Sparrow." Comparative Biochemistry and Physiology Part		
901	A: Molecular & amp; Integrative Physiology 152, no. 3 (March 2009): 322-26.		
902	https://doi.org/10.1016/j.cbpa.2008.11.003.		Code de champ modifié
903	Saraç, F., and F. Saygılı. "Causes of High Bone Alkaline Phosphatase." Biotechnology		
904	& Biotechnological Equipment 21, no. 2 (January 2007): 194-97.		
905	https://doi.org/10.1080/13102818.2007.10817444.		Code de champ modifié
906	Seabrook, Leonie, Clive McAlpine, Greg Baxter, Jonathan Rhodes, Adrian Bradley, and		
907	Daniel Lunney. "Drought-Driven Change in Wildlife Distribution and Numbers: A Case		
908	Study of Koalas in South West Queensland." Wildlife Research 38, no. 6 (2011): 509.		
909	https://doi.org/10.1071/wr11064.	_	Code de champ modifié
010	Schoanf I. N. Dillow and C. Schradin "The Dethenbygiclosy of Survival in Usersh		
910	Schoepf, I., N. Pillay, and C. Schradin. "The Pathophysiology of Survival in Harsh		
911	Environments." Journal of Comparative Physiology B 187, no. 1 (July 15, 2016): 183-201.		
912	https://doi.org/10.1007/s00360-016-1020-2.		Code de champ modifié

913	Schoepf, I., N. Pillay, and C. Schradin. "Trade-Offs between Reproduction and Health in	
914	Free-Ranging African Striped Mice." Journal of Comparative Physiology B 187, no. 4	
915	(February 4, 2017): 625–37. <u>https://doi.org/10.1007/s00360-016-1054-5</u> .	Code de champ modifié
916	Schulte-Hostedde, Albrecht I., Bertram Zinner, John S. Millar, and Graham J. Hickling.	
917	"RESTITUTION OF MASS-SIZE RESIDUALS: VALIDATING BODY CONDITION	
918	INDICES." Ecology 86, no. 1 (January 2005): 155-63. <u>https://doi.org/10.1890/04-0232</u> .	Code de champ modifié
919	Seebacher, Frank, and Craig E. Franklin. "Determining Environmental Causes of Biological	
920	Effects: The Need for a Mechanistic Physiological Dimension in Conservation Biology."	
921	Philosophical Transactions of the Royal Society B: Biological Sciences 367, no. 1596 (June	
922	19, 2012): 1607–14. <u>https://doi.org/10.1098/rstb.2012.0036</u> .	Code de champ modifié
923	Seebacher, Frank, William Davison, Cara J Lowe, and Craig E Franklin. "A Falsification of	
924	the Thermal Specialization Paradigm: Compensation for Elevated Temperatures in Antarctic	
925	Fishes." Biology Letters 1, no. 2 (April 28, 2005): 151-54.	
926	https://doi.org/10.1098/rsbl.2004.0280.	Code de champ modifié
927	Shapiro, R, and R.P Heaney. "Co-Dependence of Calcium and Phosphorus for Growth and	 a mis en forme : Couleur de police : Rouge, Barré
928	Bone Development under Conditions of Varying Deficiency." Bone 32, no. 5 (May 2003):	
929	532-40. <u>https://doi.org/10.1016/s8756-3282(03)00060-7.</u>	a mis en forme : Couleur de police : Rouge, Barré
		a mis en forme : Couleur de police : Rouge, Barré
930	Solmsen, N., J. Johannesen, and C. Schradin. "Highly Asymmetric Fine-Scale Genetic	
931	Structure between Sexes of African Striped Mice and Indication for Condition Dependent	
932	Alternative Male Dispersal Tactics." Molecular Ecology 20, no. 8 (March 3, 2011): 1624–34.	
933	https://doi.org/10.1111/j.1365-294x.2011.05042.x.	Code de champ modifié

934	Somero, G. N. "The Physiology of Climate Change: How Potentials for Acclimatization and		
935	Genetic Adaptation Will Determine 'Winners' and 'Losers.'" Journal of Experimental		
936	Biology 213, no. 6 (March 15, 2010): 912-20. <u>https://doi.org/10.1242/jeb.037473</u> .		Code de champ modifié
937	Somero, George N. "The Physiology of Global Change: Linking Patterns to Mechanisms."		
938	Annual Review of Marine Science 4, no. 1 (January 15, 2012): 39-61.		
939	https://doi.org/10.1146/annurev-marine-120710-100935.		Code de champ modifié
940	Speakman, John R. "The Physiological Costs of Reproduction in Small Mammals."		
941	Philosophical Transactions of the Royal Society B: Biological Sciences 363, no. 1490		
942	(August 8, 2007): 375–98. <u>https://doi.org/10.1098/rstb.2007.2145</u> .		Code de champ modifié
943	Stawski, Clare, and A Daniella Rojas. "Thermal Physiology of a Reproductive Female		
944	Marsupial, Antechinus Flavipes." Mammal Research 61, no. 4 (July 21, 2016): 417–21.		
945	https://doi.org/10.1007/s13364-016-0287-8.		Code de champ modifié
946	Sullivan, Jennifer C., Laura Semprun-Prieto, Erika I. Boesen, David M. Pollock, and Jennifer		
947	S. Pollock. "Sex and Sex Hormones Influence the Development of Albuminuria and Renal		
948	Macrophage Infiltration in Spontaneously Hypertensive Rats." American Journal of		
949	Physiology-Regulatory, Integrative and Comparative Physiology 293, no. 4 (October 2007):	C	
950	R1573–79. <u>https://doi.org/10.1152/ajpregu.00429.2007</u> .		Code de champ modifié
951	Sundar Ray, Chinmaya, Bratati Singh, Itishri Jena, Sudeshna Behera, and Subhashree Ray.		
952	"Low Alkaline Phosphatase (ALP) In Adult Population an Indicator of Zinc (Zn) and		
953	Magnesium (Mg) Deficiency." Current Research in Nutrition and Food Science Journal 5, no.		
954	3 (December 19, 2017): 347–52. <u>https://doi.org/10.12944/crnfsj.5.3.20</u> .		Code de champ modifié

955	Taylor, K. D., and M. G. Green. "The Influence of Rainfall on Diet and Reproduction in Four		
956	African Rodent Species." Journal of Zoology 180, no. 3 (November 1976): 367-89.		
957	https://doi.org/10.1111/j.1469-7998.1976.tb04683.x.	(Code de champ modifié
958	Thaler, M Michael, David L Gemes, and Arne F Bakken. "Enzymatic Conversion of Heme to		
959	Bilirubin in Normal and Starved Fetuses and Newborn Rats." Pediatric Research 6, no. 3		
960	(March 1972): 197-201. https://doi.org/10.1203/00006450-197203000-00008.	(Code de champ modifié
961	Thornthwaite, C. W. "An Approach toward a Rational Classification of Climate."		
962	Geographical Review 38, no. 1 (January 1948): 55. https://doi.org/10.2307/210739.	(Code de champ modifié
963	Tothova, C., O. Nagy, and G. Kovac. "Serum Proteins and Their Diagnostic Utility in		
004	Veterinary Medicine: A Review." Veterinární Medicína 61, no. 9 (September 30, 2016): 475-		
964			
964 965	96. <u>https://doi.org/10.17221/19/2016-vetmed.</u>	(Code de champ modifié
		(Code de champ modifié
965	96. <u>https://doi.org/10.17221/19/2016-vetmed</u> .	(Code de champ modifié
965 966	96. <u>https://doi.org/10.17221/19/2016-vetmed.</u> Tshikae, Balatlhane P., Adrian L. V. Davis, and Clarke H. Scholtz. "Does an Aridity and	(Code de champ modifié
965 966 967	96. <u>https://doi.org/10.17221/19/2016-vetmed.</u>Tshikae, Balatlhane P., Adrian L. V. Davis, and Clarke H. Scholtz. "Does an Aridity and Trophic Resource Gradient Drive Patterns of Dung Beetle Food Selection across the	(Code de champ modifié Code de champ modifié
965 966 967 968	 96. <u>https://doi.org/10.17221/19/2016-vetmed.</u> Tshikae, Balatlhane P., Adrian L. V. Davis, and Clarke H. Scholtz. "Does an Aridity and Trophic Resource Gradient Drive Patterns of Dung Beetle Food Selection across the Botswana Kalahari?" Ecological Entomology 38, no. 1 (January 22, 2013): 83–95. 	(
965 966 967 968 969	96. <u>https://doi.org/10.17221/19/2016-vetmed</u> . Tshikae, Balatlhane P., Adrian L. V. Davis, and Clarke H. Scholtz. "Does an Aridity and Trophic Resource Gradient Drive Patterns of Dung Beetle Food Selection across the Botswana Kalahari?" Ecological Entomology 38, no. 1 (January 22, 2013): 83–95. <u>https://doi.org/10.1111/j.1365-2311.2012.01409.x</u> .	_(
965 966 967 968 969 970	96. <u>https://doi.org/10.17221/19/2016-vetmed</u> . Tshikae, Balatlhane P., Adrian L. V. Davis, and Clarke H. Scholtz. "Does an Aridity and Trophic Resource Gradient Drive Patterns of Dung Beetle Food Selection across the Botswana Kalahari?" Ecological Entomology 38, no. 1 (January 22, 2013): 83–95. <u>https://doi.org/10.1111/j.1365-2311.2012.01409.x</u> . Usui, Takuji, David Lerner, Isaac Eckert, Amy L. Angert, Colin J. Garroway, Anna	_(
965 966 967 968 969 970 971	 96. <u>https://doi.org/10.17221/19/2016-vetmed.</u> Tshikae, Balatlhane P., Adrian L. V. Davis, and Clarke H. Scholtz. "Does an Aridity and Trophic Resource Gradient Drive Patterns of Dung Beetle Food Selection across the Botswana Kalahari?" Ecological Entomology 38, no. 1 (January 22, 2013): 83–95. <u>https://doi.org/10.1111/j.1365-2311.2012.01409.x.</u> Usui, Takuji, David Lerner, Isaac Eckert, Amy L. Angert, Colin J. Garroway, Anna Hargreaves, Lesley T. Lancaster, et al. "The Evolution of Plasticity at Geographic Range 	(
965 966 967 968 969 970 971 971	 96. <u>https://doi.org/10.17221/19/2016-vetmed.</u> Tshikae, Balatlhane P., Adrian L. V. Davis, and Clarke H. Scholtz. "Does an Aridity and Trophic Resource Gradient Drive Patterns of Dung Beetle Food Selection across the Botswana Kalahari?" Ecological Entomology 38, no. 1 (January 22, 2013): 83–95. <u>https://doi.org/10.1111/j.1365-2311.2012.01409.x.</u> Usui, Takuji, David Lerner, Isaac Eckert, Amy L. Angert, Colin J. Garroway, Anna Hargreaves, Lesley T. Lancaster, et al. "The Evolution of Plasticity at Geographic Range Edges." Trends in Ecology & amp; Evolution 38, no. 9 (September 2023): 831–42. 		Code de champ modifié

976 the Elderly Population: Frailty, Disability, Sarcopenia, and Reduced Survival." The Journals

977	of Gerontology: Series A 73, no. 7 (June 19, 2017): 925–30.	
978	https://doi.org/10.1093/gerona/glx126.	Code de champ modifié
979	"Clinical Methods: The History, Physical, and Laboratory Examinations." Annals of Internal	
980	Medicine 113, no. 7 (October 1, 1990): 563. <u>https://doi.org/10.7326/0003-4819-113-7-563_2</u> .	 Code de champ modifié
981	Webster, Nicole S, and Thorsten B H Reusch. "Microbial Contributions to the Persistence of	
982	Coral Reefs." The ISME Journal 11, no. 10 (May 16, 2017): 2167–74.	
983	https://doi.org/10.1038/ismej.2017.66.	Code de champ modifié
		· · · · ·
984	Willmer, Pat, Graham Stone, and Ian Johnston. Environmental Physiology of Animals. John	
985	Wiley & Sons, 2009.	
000		
986	Wu, Nicholas C., and Frank Seebacher. "Physiology Can Predict Animal Activity,	
987	Exploration, and Dispersal." Communications Biology 5, no. 1 (February 3, 2022).	
988	https://doi.org/10.1038/s42003-022-03055-y.	 Code de champ modifié
989	Yousef, M.I., H.A. El Hendy, F.M. El-Demerdash, and E.I. Elagamy. "Dietary Zinc	
990	Deficiency Induced-Changes in the Activity of Enzymes and the Levels of Free Radicals,	
991	Lipids and Protein Electrophoretic Behavior in Growing Rats." Toxicology 175, no. 1–3 (June	
992	2002): 223–34. <u>https://doi.org/10.1016/s0300-483x(02)00049-5</u> .	Code de champ modifié
993	Zhang, Jianfen, Na Zhang, Shufang Liu, Songming Du, and Guansheng Ma. "Young Adults	
994	with Higher Salt Intake Have Inferior Hydration Status: A Cross-Sectional Study." Nutrients	
995	14, no. 2 (January 11, 2022): 287. <u>https://doi.org/10.3390/nu14020287</u> .	Code de champ modifié
996	Zhao, Miao-Miao, Jeremy Krebs, Xi Cao, Jing Cui, Dong-Ning Chen, Yu Li, Lin Hua, Jim	
997	Mann, and Jin-Kui Yang. "Helicobacter Pylori Infection as a Risk Factor for Serum Bilirubin	
998	Change and Less Favourable Lipid Profiles: A Hospital-Based Health Examination Survey."	

999 BMC Infectious Diseases 19, no. 1 (February 14, 2019). <u>https://doi.org/10.1186/s12879-019-</u>

Code de champ modifié

- 1000 <u>3787-8</u>.
- 1001 Zomer, Robert J., Jianchu Xu, and Antonio Trabucco. "Version 3 of the Global Aridity Index
- and Potential Evapotranspiration Database." Scientific Data 9, no. 1 (July 15, 2022).
- 1003 <u>https://doi.org/10.1038/s41597-022-01493-1</u>.

1004 Tables

1005 <u>Table 1: Summary of main ecological characteristics of R.bechuanae and R.d.dilectus and</u>

1006 of our predictions on their physiological response during the dry season

ECOLOGICAL CHARACTERISTICS	R.BECHUANAE	R.D.DILECTUS	
ENVIRONMENTAL NICHE	Arid to semi-arid (Ganem et al., 2020)	Mesic to semi-arid (Ganem et al., 2020)	
PREFERRED HABITAT	Bushy patches (Dufour et al., 2015)	Continuous cover / grassland (Dufour et al., 2015)	
SOCIAL STRUCTURE	Group-living (Dufour et al., 2018)	Solitary / opportunistic group- living (Dufour et al., 2018)	
SPECIES-SPECIFIC RESPONSE TO SEASONAL VARIATIONS OF DRY CONDITIONS: PREDICTIONS			
BODY CONDITION	ンン or ン*	77	
NUTRITIONAL METABOLISM	עע טיע <i>א</i> *	77	
LIVER ACTIVITY	√√ or √*	77	
WATER BALANCE	ע'ע or אי	77	
SENSITIVITY TO INFECTION	// or /*	77	
ASEASONAL DIFFERENCESSPECIES DIFFERENCES; PREDICTIONS		a mis en forme : Couleur de police	: Rouge
BODY CONDITION	+	-	
LIVER ACTIVITY	+	-	
WATER BALANCE	+	-	
SENSITIVITY TO INFECTION	-	+	

1007

1008 *Adaptation to harsher arid conditions could have enabled *R.bechuanae* to withstand growing aridity without

1009 suffering as many adverse effects as *R.d.dilectus* in the semi-arid zone. Alternatively, semi-arid populations of

1010 both species could both have developed local adaptation.

Table 2: Geographical position and Aridity Index of sampled sites for each species

Species	SAMPLED SITES	GEOGRAPHICAL COORDINATES	ARIDITY INDEX*
R.bechuanae	Gariep Dam Nature Reserve	E25.55537; S30.57589	$0.\frac{3542 \pm 0.07 - 0.49}{0.35}$
	Kalkfontein Dam Nature Reserve	E25.28031; S29.52058	0.54 ± 0.0747 -0.61
	Benfontein Nature Reserve**	E24.81824; S28.82747	$0.39 \pm 0.07 2 + 0.46$
R.d.dilectus	Bloemhof Dam Nature Reserve	E25.65144; S27.66063	0. <u>3529 ± 0.06-0.41</u>
	Barberspan Bird Sanctuary**	E25.58354; S26.56538	$0.39 \pm 0.054 + 0.44$
	Wolwespruit Nature Reserve	E26.26326; S27.41418	$0.43 - 0.63 \\ \underline{53 \pm 0.10}$

*Average Aridity index (see Supplementary material for formula) ± Standard Error of the

Mean, based on climate data collected from 2010 to 2021 (South African Weather Service)

** Sampled only in May 2022 (dry season onset).

1019 1020	<u>Table 3: Results of th</u> (response variable: N		ariance <u>(ANOVA)</u>	<u>test addressing va</u>	riation in NDVI	a mis en forme : Police :Italique
Ι	Variable	Df	\mathbb{R}^2	F	Р	
	Session	1	0.445	442.757	< 2.2*10 ⁻¹⁶	
	Site	3	0.348	115.385	< 2.2*10 ⁻¹⁶	
	Session*Site	3	0.021	7.113	1.512*10-4	
	Residual	229	0.185			

<u>Table 4: Results of the Analysis</u> conditionResults of the Analysi			riable : body e		
Variable	Df	R ²	F	Р	
Session	1	<u>1.271*10⁻⁵</u>	<u>0.0019</u>	<u>0.965</u>	_
SessionSex	1	<u>0.085</u> 0.017	4 <u>.48925.163</u>	<u>1.072*10-</u>	_
<u>NDVI</u>	<u>1</u>	8.007*10-4	0.239	60.035 <u>0.626</u>	•
Age class	<u>3</u>	<u>0.091</u>	<u>8.990</u>	<u>1.201*10⁻⁵</u>	1
Breeding status	2	<u>0,041</u>	<u>6.067</u>	0,003	-
Session*SexBreeding status	<u>1</u> 2	<u>5.592*10⁻⁴0.079</u>	<u>0.167</u> 10.353	<u>0.683</u> 4.978*10 ⁻ 5	7
Session*Breeding status	2	<u>0.0299</u>	4.444	0.012	-
Session*Breeding status	2	0.024	3.142	0.045	
<u>Residual</u> NDVI	<u>229</u> +	<u>0.753</u> 0.013	3.425	0.066	_
Sex	4	0.004	1.144	0.286	
	4	0.003	0.703	0.403	
Session*Sex	т	0.005	017 02		

Table 4. Results of the Analysis of Variance (ANOVA) test addressing variation in body

Commenté [GG1]: corriger etre plus précis

	a mis en forme : Couleur de police : Rouge						
_	a mis en forme						
	a mis en forme : Couleur de police : Rouge						
	a mis en forme						
	a mis en forme						
$\overline{\ }$	a mis en forme						
$\langle \rangle$	a mis en forme						
$\langle \rangle$	a mis en forme : Police :Non Gras, Couleur de police : Rouge						
	a mis en forme : Centré						
	a mis en forme : Couleur de police : Rouge						
////	a mis en forme						
	a mis en forme						
	a mis en forme						
	a mis en forme : Centré						
	a mis en forme le tableau						
	a mis en forme : Couleur de police : Rouge						
	a mis en forme						
	a mis en forme						
	a mis en forme : Centré						
	a mis en forme : Couleur de police : Rouge						
	a mis en forme						
	a mis en forme						
	a mis en forme : Couleur de police : Rouge						
$\left \right $	a mis en forme						
	a mis en forme						
	a mis en forme le tableau						
	a mis en forme : Couleur de police : Rouge						
	a mis en forme : Couleur de police : Rouge						
	a mis en forme le tableau						

1027 <u>Table 5: Summary of the results of the best fitting Permutational multivariate analysis of</u>

1028 variance (PERMANOVA) model, addressing variation in physiological response (site=

1029 <u>random factor)</u>

1030

Variable	Df	R ²	Pseudo-F	Р
Session	1	0.011	2. 923 882	0.06 <u>7</u>
Species	1	0.042	11. 227<u>0</u>70.	0.00 <u>3</u>
Sex	1	0.010	2. 786 74 <u>8</u>	0.08 <u>7</u>
Breeding status	2	0.025033	<u>3.2824.320</u>	<u>0.011</u>
Body condition	1	0.018	4 .936	0.019
Species * Sex	1	0.01 <u>68</u>	4. 762<u>232</u>	0.0 <u>29</u> -
Species *	2	0. <u>030026</u>	3. <u>964413</u>	0.0<u>37</u>
Species * Breeding status	2	0. <u>030026</u>	3. <u>964413</u>	
Residual	22 <u>7</u> 6	0.8 <u>62</u> 4 6		

1031

a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Times New Roman, Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Times New Roman, Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Times New Roman, Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Times New Roman, Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Times New Roman, Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Non Gras, Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Times New Roman, Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Times New Roman, Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Times New Roman, Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Couleur de police : Rouge
a mis en forme : Police :Times New Roman, Couleur de police : Rouge

1033 <u>Table 6: Summary of the results of univariate mixed models analyses of variance</u>

1034 addressing variation in responses of each of the 12 studied physiological variables (best

1035 *fitting models*).

1036

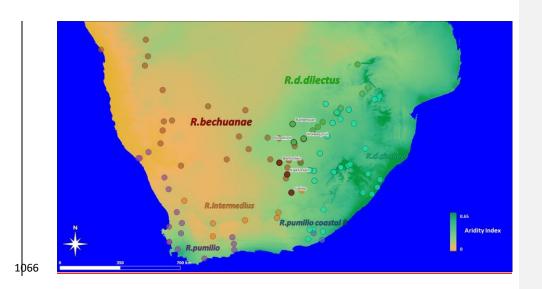
Physiological marker	Variable(s) kept in Best Model and their significance	adjusted R ²	F	df Model	df Residual	P (model)
Albumin	Session***, Sex*	0.098	13.72	2	233	2.338*10-6
Alkaline phosphatase	Session***, Species*, Sex***, Breeding status ⁺	0.260	17.43	5	229	< 1.281*10 ⁻¹⁴
Alanine aminotransferase	Session [*] , Species, Sex, Breeding status, Species*Sex, Species*Breeding Status	0.060	2.884	8	227	0.004
Amylase	Species ***, Sex, Breeding status, Species*Sex, Species*Breeding Status	0.185	8.603	7	228	3.34*10 ⁻⁹
Calcium	Species	0.009	3.095	1	234	0.080
Globulin	Session***	0.291	97.44	1	234	< 2.2*10 ⁻¹⁶
Glucose	Session ⁺ , Sex ^{**}	0.079	11.14	2	233	2.397 *10-5
Potassium	Session*, Species*	0.068	9.569	2	233	1.014*10-4
Sodium	Session, Species***, Sex	0. <u>092</u> 110	10.65<u>12.87</u>	<u>2</u> 3	23 <u>3</u> 2	<u>4.983</u> 1.39*10 ⁻ 6
Blood Urea Nitrogen	Null Random effect model	0.072	/	/	/	/
Phosphorus	Species, Sex, Breeding status * + random	0.248	/	/	/	$(\chi^2 \text{ test vs.} $ null model) 3.471*10 ⁻⁷

1037

1038 Note: The full models, before backwards elimination, included session, species, body condition, sex, breeding

1039 status, sex*species and breeding status*species as variables, with breeding status nested within sex and site as a

1040 partially-crossed random factor nested within species.


1041 Bold: significant effects (p < 0.05) following Bonferroni correction with:

1042 ***: p < 0.001; **: 0.001 ; *: <math>0.01 ; +: <math>0.05

1043	Figure captions
1044	Figure 1: Map of known occurrences of 6 main clades of Rhabdomys (translucent dots)
1045	and locations sampled in this study (full colour dots) in southern Africa. Based on published
1046	data and unpublished data (origin details are available in doi: 0d1b3414-7e2a-11ea-a38d-
1047	00163e26bfb0). Base map: World Topographic Map Esri Standard, Aridity Index layer was
1048	computed from a 0.5° global grid, using data from the Version 3 of the Global Aridity Index
1049	and Potential Evapotranspiration Database (Zomer et al., 2022).
1050	Figure 2: Graphical summary of organization and composition of data used for analysis in
1051	this study. Figures between brackets indicate number of modalities or types of categories
1052	included in the factor.
1053	Figure 3: Total monthly precipitation for all sampled sites as recorded in 2022.
1054	Figure 4: Average Normalized Differential Vegetation Index calculated within a buffer
1055	circle of 60m radius around each successful trap per site and session. NDVI was retrieved
1056	from the Copernicus Open Access Data Hub (Copernicus Sentinel-2 data [2023]). For each
1057	site and session, we retained NDVI data available for the closest day to the beginning of a
1058	sampling session, expected to represent the conditions experienced by the mice at the time of
1059	capture.
1060	Figure 5: Significant shifts in blood physiological marker concentrations between the onset
1061	and the end of the dry season (mean $\pm SE$)
1062	Figure 6: Significant interspecific differences involving four blood physiological marker

concentrations (mean $\pm SE$)

Figures

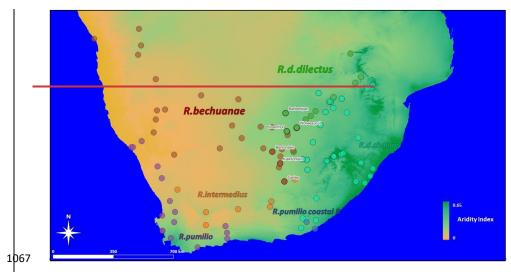
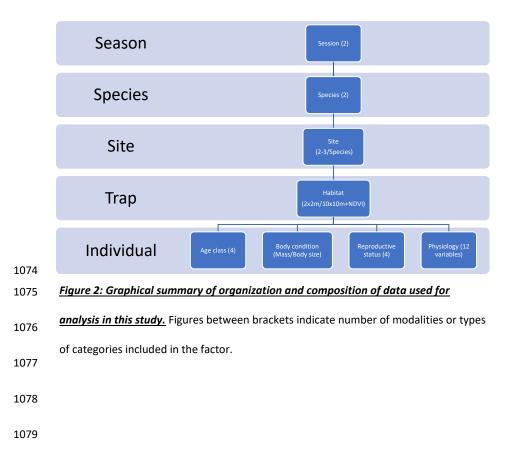
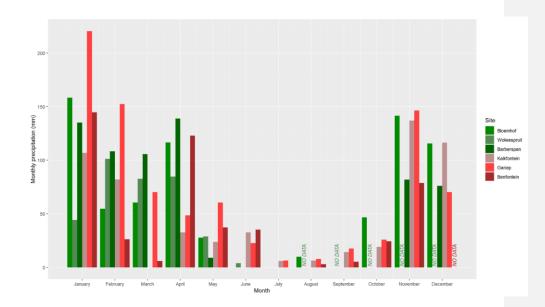
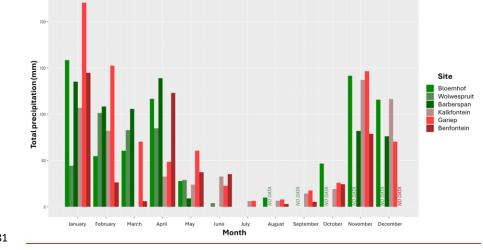
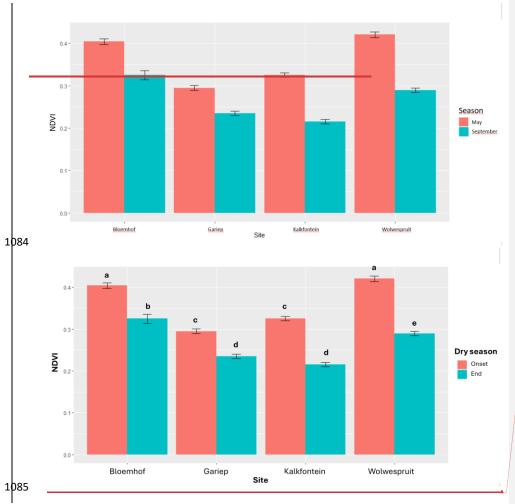
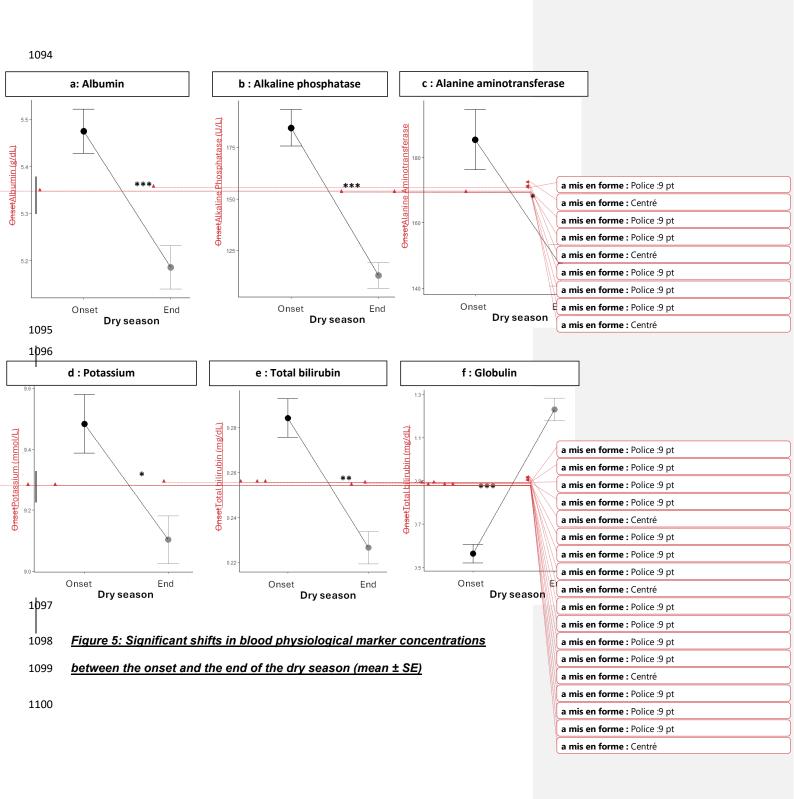
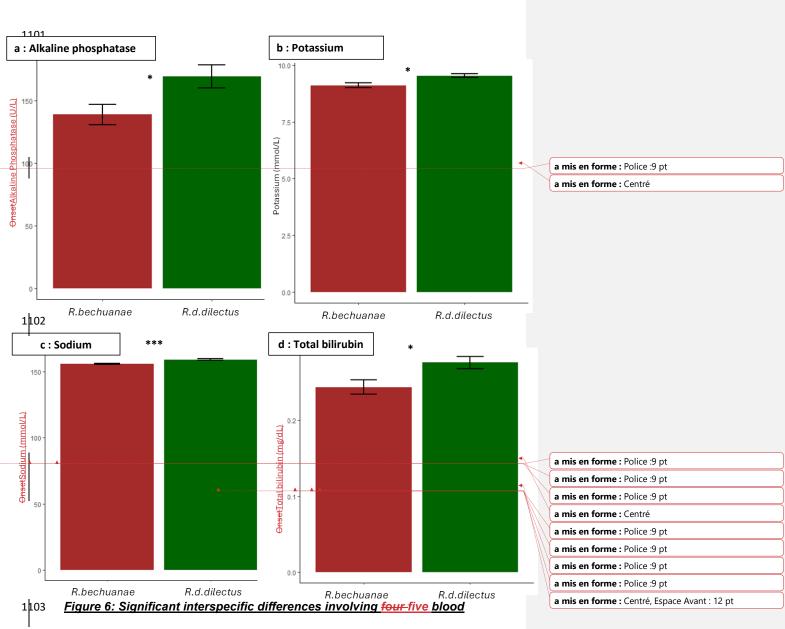





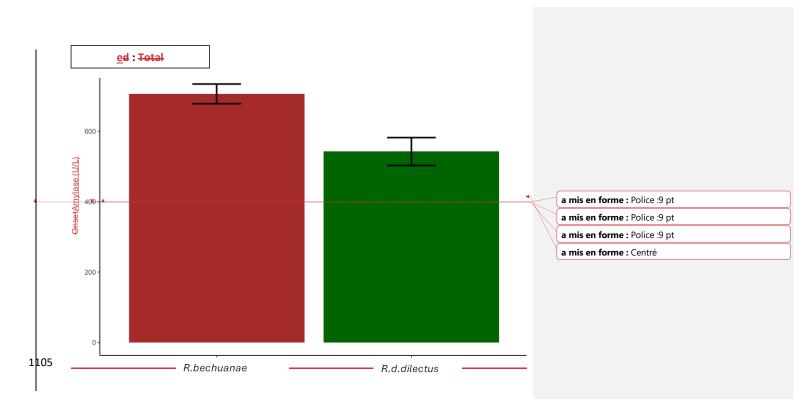
Figure 1: Map of known occurrences of 6 main clades of Rhabdomys (translucent dots) and locations sampled in this study (full colour dots) in southern Africa


- 1068 Based on published data and unpublished data (origin details are available in doi:
- 1069 0d1b3414-7e2a-11ea-a38d-00163e26bfb0). Base map: World Topographic Map Esri
- 1070 Standard, Aridity Index layer was computed from a 0.5° global grid, using data from
- 1071 the Version 3 of the Global Aridity Index and Potential Evapotranspiration Database
- 1072 (Zomer et al., 2022).
- 1073


Figure 3: Total monthly precipitation for all sampled sites as recorded in 2022.



a mis en forme : Français (France)


- 1086 Figure 4: Average Normalized Differential Vegetation Index calculated within a
- 1087 *buffer circle of 60m radius around each successful trap per site and session.*
- 1088 Different Jetters above the bars indicate statistically significant difference at P<0.05.
- 1089 NDVI was retrieved from the Copernicus Open Access Data Hub (Copernicus
- 1090 Sentinel-2 data [2023]). For each site and session, we retained NDVI data available
- 1091 for the closest day to the beginning of a sampling session, expected to represent the
- 1092 conditions experienced by the mice at the time of capture.

_	a mis en forme : Police :Non Gras
	a mis en forme : Police :Non Gras
	a mis en forme : Police :Non Gras

1104 physiological marker concentrations (mean ± SE)

